Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

172 lines
4.1 KiB

2 years ago
*> \brief \b CQRT11
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION CQRT11( M, K, A, LDA, TAU, WORK, LWORK )
*
* .. Scalar Arguments ..
* INTEGER K, LDA, LWORK, M
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CQRT11 computes the test ratio
*>
*> || Q'*Q - I || / (eps * m)
*>
*> where the orthogonal matrix Q is represented as a product of
*> elementary transformations. Each transformation has the form
*>
*> H(k) = I - tau(k) v(k) v(k)'
*>
*> where tau(k) is stored in TAU(k) and v(k) is an m-vector of the form
*> [ 0 ... 0 1 x(k) ]', where x(k) is a vector of length m-k stored
*> in A(k+1:m,k).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of columns of A whose subdiagonal entries
*> contain information about orthogonal transformations.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,K)
*> The (possibly partial) output of a QR reduction routine.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (K)
*> The scaling factors tau for the elementary transformations as
*> computed by the QR factorization routine.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= M*M + M.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
REAL FUNCTION CQRT11( M, K, A, LDA, TAU, WORK, LWORK )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
INTEGER INFO, J
* ..
* .. External Functions ..
REAL CLANGE, SLAMCH
EXTERNAL CLANGE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLASET, CUNM2R, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, REAL
* ..
* .. Local Arrays ..
REAL RDUMMY( 1 )
* ..
* .. Executable Statements ..
*
CQRT11 = ZERO
*
* Test for sufficient workspace
*
IF( LWORK.LT.M*M+M ) THEN
CALL XERBLA( 'CQRT11', 7 )
RETURN
END IF
*
* Quick return if possible
*
IF( M.LE.0 )
$ RETURN
*
CALL CLASET( 'Full', M, M, CMPLX( ZERO ), CMPLX( ONE ), WORK, M )
*
* Form Q
*
CALL CUNM2R( 'Left', 'No transpose', M, M, K, A, LDA, TAU, WORK,
$ M, WORK( M*M+1 ), INFO )
*
* Form Q'*Q
*
CALL CUNM2R( 'Left', 'Conjugate transpose', M, M, K, A, LDA, TAU,
$ WORK, M, WORK( M*M+1 ), INFO )
*
DO 10 J = 1, M
WORK( ( J-1 )*M+J ) = WORK( ( J-1 )*M+J ) - ONE
10 CONTINUE
*
CQRT11 = CLANGE( 'One-norm', M, M, WORK, M, RDUMMY ) /
$ ( REAL( M )*SLAMCH( 'Epsilon' ) )
*
RETURN
*
* End of CQRT11
*
END