You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
257 lines
6.9 KiB
257 lines
6.9 KiB
2 years ago
|
*> \brief \b DQRT14
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* DOUBLE PRECISION FUNCTION DQRT14( TRANS, M, N, NRHS, A, LDA, X,
|
||
|
* LDX, WORK, LWORK )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANS
|
||
|
* INTEGER LDA, LDX, LWORK, M, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION A( LDA, * ), WORK( LWORK ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DQRT14 checks whether X is in the row space of A or A'. It does so
|
||
|
*> by scaling both X and A such that their norms are in the range
|
||
|
*> [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
|
||
|
*> (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'),
|
||
|
*> and returning the norm of the trailing triangle, scaled by
|
||
|
*> MAX(M,N,NRHS)*eps.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> = 'N': No transpose, check for X in the row space of A
|
||
|
*> = 'T': Transpose, check for X in the row space of A'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
*> The M-by-N matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] X
|
||
|
*> \verbatim
|
||
|
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
|
||
|
*> If TRANS = 'N', the N-by-NRHS matrix X.
|
||
|
*> IF TRANS = 'T', the M-by-NRHS matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array dimension (LWORK)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> length of workspace array required
|
||
|
*> If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
|
||
|
*> if TRANS = 'T', LWORK >= (N+NRHS)*(M+2).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
DOUBLE PRECISION FUNCTION DQRT14( TRANS, M, N, NRHS, A, LDA, X,
|
||
|
$ LDX, WORK, LWORK )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANS
|
||
|
INTEGER LDA, LDX, LWORK, M, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION A( LDA, * ), WORK( LWORK ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL TPSD
|
||
|
INTEGER I, INFO, J, LDWORK
|
||
|
DOUBLE PRECISION ANRM, ERR, XNRM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
DOUBLE PRECISION RWORK( 1 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, DLANGE
|
||
|
EXTERNAL LSAME, DLAMCH, DLANGE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DGELQ2, DGEQR2, DLACPY, DLASCL, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
DQRT14 = ZERO
|
||
|
IF( LSAME( TRANS, 'N' ) ) THEN
|
||
|
LDWORK = M + NRHS
|
||
|
TPSD = .FALSE.
|
||
|
IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
|
||
|
CALL XERBLA( 'DQRT14', 10 )
|
||
|
RETURN
|
||
|
ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
|
||
|
LDWORK = M
|
||
|
TPSD = .TRUE.
|
||
|
IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
|
||
|
CALL XERBLA( 'DQRT14', 10 )
|
||
|
RETURN
|
||
|
ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
ELSE
|
||
|
CALL XERBLA( 'DQRT14', 1 )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Copy and scale A
|
||
|
*
|
||
|
CALL DLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
|
||
|
ANRM = DLANGE( 'M', M, N, WORK, LDWORK, RWORK )
|
||
|
IF( ANRM.NE.ZERO )
|
||
|
$ CALL DLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
|
||
|
*
|
||
|
* Copy X or X' into the right place and scale it
|
||
|
*
|
||
|
IF( TPSD ) THEN
|
||
|
*
|
||
|
* Copy X into columns n+1:n+nrhs of work
|
||
|
*
|
||
|
CALL DLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
|
||
|
$ LDWORK )
|
||
|
XNRM = DLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
|
||
|
$ RWORK )
|
||
|
IF( XNRM.NE.ZERO )
|
||
|
$ CALL DLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
|
||
|
$ WORK( N*LDWORK+1 ), LDWORK, INFO )
|
||
|
*
|
||
|
* Compute QR factorization of X
|
||
|
*
|
||
|
CALL DGEQR2( M, N+NRHS, WORK, LDWORK,
|
||
|
$ WORK( LDWORK*( N+NRHS )+1 ),
|
||
|
$ WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Compute largest entry in upper triangle of
|
||
|
* work(n+1:m,n+1:n+nrhs)
|
||
|
*
|
||
|
ERR = ZERO
|
||
|
DO 20 J = N + 1, N + NRHS
|
||
|
DO 10 I = N + 1, MIN( M, J )
|
||
|
ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Copy X' into rows m+1:m+nrhs of work
|
||
|
*
|
||
|
DO 40 I = 1, N
|
||
|
DO 30 J = 1, NRHS
|
||
|
WORK( M+J+( I-1 )*LDWORK ) = X( I, J )
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
XNRM = DLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
|
||
|
IF( XNRM.NE.ZERO )
|
||
|
$ CALL DLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
|
||
|
$ LDWORK, INFO )
|
||
|
*
|
||
|
* Compute LQ factorization of work
|
||
|
*
|
||
|
CALL DGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
|
||
|
$ WORK( LDWORK*( N+1 )+1 ), INFO )
|
||
|
*
|
||
|
* Compute largest entry in lower triangle in
|
||
|
* work(m+1:m+nrhs,m+1:n)
|
||
|
*
|
||
|
ERR = ZERO
|
||
|
DO 60 J = M + 1, N
|
||
|
DO 50 I = J, LDWORK
|
||
|
ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
DQRT14 = ERR / ( DBLE( MAX( M, N, NRHS ) )*DLAMCH( 'Epsilon' ) )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DQRT14
|
||
|
*
|
||
|
END
|