You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
7.1 KiB
259 lines
7.1 KiB
2 years ago
|
*> \brief \b DSYT01
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DSYT01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
|
||
|
* RWORK, RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER LDA, LDAFAC, LDC, N
|
||
|
* DOUBLE PRECISION RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
|
||
|
* $ RWORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DSYT01 reconstructs a symmetric indefinite matrix A from its
|
||
|
*> block L*D*L' or U*D*U' factorization and computes the residual
|
||
|
*> norm( C - A ) / ( N * norm(A) * EPS ),
|
||
|
*> where C is the reconstructed matrix and EPS is the machine epsilon.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the upper or lower triangular part of the
|
||
|
*> symmetric matrix A is stored:
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of rows and columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
*> The original symmetric matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AFAC
|
||
|
*> \verbatim
|
||
|
*> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
|
||
|
*> The factored form of the matrix A. AFAC contains the block
|
||
|
*> diagonal matrix D and the multipliers used to obtain the
|
||
|
*> factor L or U from the block L*D*L' or U*D*U' factorization
|
||
|
*> as computed by DSYTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAFAC
|
||
|
*> \verbatim
|
||
|
*> LDAFAC is INTEGER
|
||
|
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> The pivot indices from DSYTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] C
|
||
|
*> \verbatim
|
||
|
*> C is DOUBLE PRECISION array, dimension (LDC,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDC
|
||
|
*> \verbatim
|
||
|
*> LDC is INTEGER
|
||
|
*> The leading dimension of the array C. LDC >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is DOUBLE PRECISION
|
||
|
*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
|
||
|
*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DSYT01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
|
||
|
$ LDC, RWORK, RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER LDA, LDAFAC, LDC, N
|
||
|
DOUBLE PRECISION RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
|
||
|
$ RWORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J
|
||
|
DOUBLE PRECISION ANORM, EPS
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, DLANSY
|
||
|
EXTERNAL LSAME, DLAMCH, DLANSY
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLASET, DLAVSY
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick exit if N = 0.
|
||
|
*
|
||
|
IF( N.LE.0 ) THEN
|
||
|
RESID = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Determine EPS and the norm of A.
|
||
|
*
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
|
||
|
*
|
||
|
* Initialize C to the tridiagonal matrix T.
|
||
|
*
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ZERO, C, LDC )
|
||
|
CALL DLACPY( 'F', 1, N, AFAC( 1, 1 ), LDAFAC+1, C( 1, 1 ), LDC+1 )
|
||
|
IF( N.GT.1 ) THEN
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
CALL DLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 1, 2 ),
|
||
|
$ LDC+1 )
|
||
|
CALL DLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 2, 1 ),
|
||
|
$ LDC+1 )
|
||
|
ELSE
|
||
|
CALL DLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 1, 2 ),
|
||
|
$ LDC+1 )
|
||
|
CALL DLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 2, 1 ),
|
||
|
$ LDC+1 )
|
||
|
ENDIF
|
||
|
*
|
||
|
* Call DTRMM to form the product U' * D (or L * D ).
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
CALL DTRMM( 'Left', UPLO, 'Transpose', 'Unit', N-1, N,
|
||
|
$ ONE, AFAC( 1, 2 ), LDAFAC, C( 2, 1 ), LDC )
|
||
|
ELSE
|
||
|
CALL DTRMM( 'Left', UPLO, 'No transpose', 'Unit', N-1, N,
|
||
|
$ ONE, AFAC( 2, 1 ), LDAFAC, C( 2, 1 ), LDC )
|
||
|
END IF
|
||
|
*
|
||
|
* Call DTRMM again to multiply by U (or L ).
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
CALL DTRMM( 'Right', UPLO, 'No transpose', 'Unit', N, N-1,
|
||
|
$ ONE, AFAC( 1, 2 ), LDAFAC, C( 1, 2 ), LDC )
|
||
|
ELSE
|
||
|
CALL DTRMM( 'Right', UPLO, 'Transpose', 'Unit', N, N-1,
|
||
|
$ ONE, AFAC( 2, 1 ), LDAFAC, C( 1, 2 ), LDC )
|
||
|
END IF
|
||
|
ENDIF
|
||
|
*
|
||
|
* Apply symmetric pivots
|
||
|
*
|
||
|
DO J = N, 1, -1
|
||
|
I = IPIV( J )
|
||
|
IF( I.NE.J )
|
||
|
$ CALL DSWAP( N, C( J, 1 ), LDC, C( I, 1 ), LDC )
|
||
|
END DO
|
||
|
DO J = N, 1, -1
|
||
|
I = IPIV( J )
|
||
|
IF( I.NE.J )
|
||
|
$ CALL DSWAP( N, C( 1, J ), 1, C( 1, I ), 1 )
|
||
|
END DO
|
||
|
*
|
||
|
*
|
||
|
* Compute the difference C - A .
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
DO J = 1, N
|
||
|
DO I = 1, J
|
||
|
C( I, J ) = C( I, J ) - A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
ELSE
|
||
|
DO J = 1, N
|
||
|
DO I = J, N
|
||
|
C( I, J ) = C( I, J ) - A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
* Compute norm( C - A ) / ( N * norm(A) * EPS )
|
||
|
*
|
||
|
RESID = DLANSY( '1', UPLO, N, C, LDC, RWORK )
|
||
|
*
|
||
|
IF( ANORM.LE.ZERO ) THEN
|
||
|
IF( RESID.NE.ZERO )
|
||
|
$ RESID = ONE / EPS
|
||
|
ELSE
|
||
|
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DSYT01_AA
|
||
|
*
|
||
|
END
|