Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1015 lines
40 KiB

2 years ago
*> \brief \b SDRVLS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
* COPYB, C, S, COPYS, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NM, NN, NNB, NNS, NOUT
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER MVAL( * ), NBVAL( * ), NSVAL( * ),
* $ NVAL( * ), NXVAL( * )
* REAL A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
* $ COPYS( * ), S( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SDRVLS tests the least squares driver routines SGELS, SGELST,
*> SGETSLS, SGELSS, SGELSY and SGELSD.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> The matrix of type j is generated as follows:
*> j=1: A = U*D*V where U and V are random orthogonal matrices
*> and D has random entries (> 0.1) taken from a uniform
*> distribution (0,1). A is full rank.
*> j=2: The same of 1, but A is scaled up.
*> j=3: The same of 1, but A is scaled down.
*> j=4: A = U*D*V where U and V are random orthogonal matrices
*> and D has 3*min(M,N)/4 random entries (> 0.1) taken
*> from a uniform distribution (0,1) and the remaining
*> entries set to 0. A is rank-deficient.
*> j=5: The same of 4, but A is scaled up.
*> j=6: The same of 5, but A is scaled down.
*> \endverbatim
*>
*> \param[in] NM
*> \verbatim
*> NM is INTEGER
*> The number of values of M contained in the vector MVAL.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] NNB
*> \verbatim
*> NNB is INTEGER
*> The number of values of NB and NX contained in the
*> vectors NBVAL and NXVAL. The blocking parameters are used
*> in pairs (NB,NX).
*> \endverbatim
*>
*> \param[in] NBVAL
*> \verbatim
*> NBVAL is INTEGER array, dimension (NNB)
*> The values of the blocksize NB.
*> \endverbatim
*>
*> \param[in] NXVAL
*> \verbatim
*> NXVAL is INTEGER array, dimension (NNB)
*> The values of the crossover point NX.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is REAL array, dimension (MMAX*NMAX)
*> where MMAX is the maximum value of M in MVAL and NMAX is the
*> maximum value of N in NVAL.
*> \endverbatim
*>
*> \param[out] COPYA
*> \verbatim
*> COPYA is REAL array, dimension (MMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is REAL array, dimension (MMAX*NSMAX)
*> where MMAX is the maximum value of M in MVAL and NSMAX is the
*> maximum value of NRHS in NSVAL.
*> \endverbatim
*>
*> \param[out] COPYB
*> \verbatim
*> COPYB is REAL array, dimension (MMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is REAL array, dimension (MMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension
*> (min(MMAX,NMAX))
*> \endverbatim
*>
*> \param[out] COPYS
*> \verbatim
*> COPYS is REAL array, dimension
*> (min(MMAX,NMAX))
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
$ COPYB, C, S, COPYS, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NM, NN, NNB, NNS, NOUT
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER MVAL( * ), NBVAL( * ), NSVAL( * ),
$ NVAL( * ), NXVAL( * )
REAL A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
$ COPYS( * ), S( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
REAL ONE, TWO, ZERO
PARAMETER ( ONE = 1.0E0, TWO = 2.0E0, ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
CHARACTER TRANS
CHARACTER*3 PATH
INTEGER CRANK, I, IM, IMB, IN, INB, INFO, INS, IRANK,
$ ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK,
$ LWORK_SGELS, LWORK_SGELST, LWORK_SGETSLS,
$ LWORK_SGELSS, LWORK_SGELSY, LWORK_SGELSD
REAL EPS, NORMA, NORMB, RCOND
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 ), IWQ( 1 )
REAL RESULT( NTESTS ), WQ( 1 )
* ..
* .. Allocatable Arrays ..
REAL, ALLOCATABLE :: WORK (:)
INTEGER, ALLOCATABLE :: IWORK (:)
* ..
* .. External Functions ..
REAL SASUM, SLAMCH, SQRT12, SQRT14, SQRT17
EXTERNAL SASUM, SLAMCH, SQRT12, SQRT14, SQRT17
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, SAXPY, SERRLS, SGELS,
$ SGELSD, SGELSS, SGELST, SGELSY, SGEMM,
$ SGETSLS, SLACPY, SLARNV, SQRT13, SQRT15,
$ SQRT16, SSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN, REAL, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, IOUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, IOUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'SINGLE PRECISION'
PATH( 2: 3 ) = 'LS'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
EPS = SLAMCH( 'Epsilon' )
*
* Threshold for rank estimation
*
RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
*
* Test the error exits
*
CALL XLAENV( 2, 2 )
CALL XLAENV( 9, SMLSIZ )
IF( TSTERR )
$ CALL SERRLS( PATH, NOUT )
*
* Print the header if NM = 0 or NN = 0 and THRESH = 0.
*
IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
$ CALL ALAHD( NOUT, PATH )
INFOT = 0
CALL XLAENV( 2, 2 )
CALL XLAENV( 9, SMLSIZ )
*
* Compute maximal workspace needed for all routines
*
NMAX = 0
MMAX = 0
NSMAX = 0
DO I = 1, NM
IF ( MVAL( I ).GT.MMAX ) THEN
MMAX = MVAL( I )
END IF
ENDDO
DO I = 1, NN
IF ( NVAL( I ).GT.NMAX ) THEN
NMAX = NVAL( I )
END IF
ENDDO
DO I = 1, NNS
IF ( NSVAL( I ).GT.NSMAX ) THEN
NSMAX = NSVAL( I )
END IF
ENDDO
M = MMAX
N = NMAX
NRHS = NSMAX
MNMIN = MAX( MIN( M, N ), 1 )
*
* Compute workspace needed for routines
* SQRT14, SQRT17 (two side cases), SQRT15 and SQRT12
*
LWORK = MAX( 1, ( M+N )*NRHS,
$ ( N+NRHS )*( M+2 ), ( M+NRHS )*( N+2 ),
$ MAX( M+MNMIN, NRHS*MNMIN,2*N+M ),
$ MAX( M*N+4*MNMIN+MAX(M,N), M*N+2*MNMIN+4*N ) )
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
* routines.
*
DO IM = 1, NM
M = MVAL( IM )
LDA = MAX( 1, M )
DO IN = 1, NN
N = NVAL( IN )
MNMIN = MAX(MIN( M, N ),1)
LDB = MAX( 1, M, N )
DO INS = 1, NNS
NRHS = NSVAL( INS )
DO IRANK = 1, 2
DO ISCALE = 1, 3
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( DOTYPE( ITYPE ) ) THEN
IF( IRANK.EQ.1 ) THEN
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
ELSE
TRANS = 'T'
END IF
*
* Compute workspace needed for SGELS
CALL SGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ( 1 ), -1, INFO )
LWORK_SGELS = INT ( WQ( 1 ) )
* Compute workspace needed for SGELST
CALL SGELST( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_SGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for SGETSLS
CALL SGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ( 1 ), -1, INFO )
LWORK_SGETSLS = INT( WQ( 1 ) )
ENDDO
END IF
* Compute workspace needed for SGELSY
CALL SGELSY( M, N, NRHS, A, LDA, B, LDB, IWQ,
$ RCOND, CRANK, WQ, -1, INFO )
LWORK_SGELSY = INT( WQ( 1 ) )
* Compute workspace needed for SGELSS
CALL SGELSS( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WQ, -1 , INFO )
LWORK_SGELSS = INT( WQ( 1 ) )
* Compute workspace needed for SGELSD
CALL SGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WQ, -1, IWQ, INFO )
LWORK_SGELSD = INT( WQ( 1 ) )
* Compute LIWORK workspace needed for SGELSY and SGELSD
LIWORK = MAX( LIWORK, N, IWQ( 1 ) )
* Compute LWORK workspace needed for all functions
LWORK = MAX( LWORK, LWORK_SGELS, LWORK_SGELST,
$ LWORK_SGETSLS, LWORK_SGELSY,
$ LWORK_SGELSS, LWORK_SGELSD )
END IF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
*
LWLSY = LWORK
*
ALLOCATE( WORK( LWORK ) )
ALLOCATE( IWORK( LIWORK ) )
*
DO 150 IM = 1, NM
M = MVAL( IM )
LDA = MAX( 1, M )
*
DO 140 IN = 1, NN
N = NVAL( IN )
MNMIN = MAX(MIN( M, N ),1)
LDB = MAX( 1, M, N )
MB = (MNMIN+1)
*
DO 130 INS = 1, NNS
NRHS = NSVAL( INS )
*
DO 120 IRANK = 1, 2
DO 110 ISCALE = 1, 3
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 110
* =====================================================
* Begin test SGELS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL SLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL SSCAL( NCOLS*NRHS,
$ ONE / REAL( NCOLS ), WORK,
$ 1 )
END IF
CALL SGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, ONE, COPYA, LDA,
$ WORK, LDWORK, ZERO, B, LDB )
CALL SLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL SLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'SGELS '
CALL SGELS( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGELS ', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Test 1: Check correctness of results
* for SGELS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL SQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 1 ) )
*
* Test 2: Check correctness of results
* for SGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 2 ) = SQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 2 ) = SQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END IF
* =====================================================
* End test SGELS
* =====================================================
* =====================================================
* Begin test SGELST
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL SLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL SSCAL( NCOLS*NRHS,
$ ONE / REAL( NCOLS ), WORK,
$ 1 )
END IF
CALL SGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, ONE, COPYA, LDA,
$ WORK, LDWORK, ZERO, B, LDB )
CALL SLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL SLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'SGELST'
CALL SGELST( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Test 3: Check correctness of results
* for SGELST, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL SQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 3 ) )
*
* Test 4: Check correctness of results
* for SGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 4 ) = SQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 4 ) = SQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 ) TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END IF
* =====================================================
* End test SGELST
* =====================================================
* =====================================================
* Begin test SGETSLS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes MB.
*
DO IMB = 1, NNB
MB = NBVAL( IMB )
CALL XLAENV( 1, MB )
*
* Loop for testing different block sizes NB.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 2, NB )
*
* Loop for testing non-transposed
* and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL SLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL SSCAL( NCOLS*NRHS,
$ ONE / REAL( NCOLS ),
$ WORK, 1 )
END IF
CALL SGEMM( TRANS, 'No transpose',
$ NROWS, NRHS, NCOLS, ONE,
$ COPYA, LDA, WORK, LDWORK,
$ ZERO, B, LDB )
CALL SLACPY( 'Full', NROWS, NRHS,
$ B, LDB, COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL SLACPY( 'Full', M, N,
$ COPYA, LDA, A, LDA )
CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'SGETSLS'
CALL SGETSLS( TRANS, M, N, NRHS,
$ A, LDA, B, LDB, WORK, LWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGETSLS', INFO,
$ 0, TRANS, M, N, NRHS,
$ -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 5: Check correctness of results
* for SGETSLS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL SQRT16( TRANS, M, N, NRHS,
$ COPYA, LDA, B, LDB,
$ C, LDB, WORK,
$ RESULT( 5 ) )
*
* Test 6: Check correctness of results
* for SGETSLS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 6 ) = SQRT17( TRANS, 1, M,
$ N, NRHS, COPYA, LDA,
$ B, LDB, COPYB, LDB,
$ C, WORK, LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 6 ) = SQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA,
$ B, LDB, WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 5, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 ) TRANS,
$ M, N, NRHS, MB, NB, ITYPE,
$ K, RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END DO
END IF
* =====================================================
* End test SGETSLS
* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
*
CALL SQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
$ COPYB, LDB, COPYS, RANK, NORMA, NORMB,
$ ISEED, WORK, LWORK )
*
* workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*
LDWORK = MAX( 1, M )
*
* Loop for testing different block sizes.
*
DO 100 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Test SGELSY
*
* SGELSY: Compute the minimum-norm solution X
* to min( norm( A * X - B ) )
* using the rank-revealing orthogonal
* factorization.
*
* Initialize vector IWORK.
*
DO 70 J = 1, N
IWORK( J ) = 0
70 CONTINUE
*
CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'SGELSY'
CALL SGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
$ RCOND, CRANK, WORK, LWLSY, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGELSY', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 7 ) = SQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK )
*
* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 8 ) )
*
* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 9 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 10 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test SGELSS
*
* SGELSS: Compute the minimum-norm solution X
* to min( norm( A * X - B ) )
* using the SVD.
*
CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
SRNAMT = 'SGELSS'
CALL SGELSS( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGELSS', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 11 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
RESULT( 11 ) = ZERO
END IF
*
* Test 12: Compute error in solution
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 12 ) )
*
* Test 13: Check norm of r'*A
*
RESULT( 13 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 13 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 14: Check if x is in the rowspace of A
*
RESULT( 14 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 14 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test SGELSD
*
* SGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
* Initialize vector IWORK.
*
DO 80 J = 1, N
IWORK( J ) = 0
80 CONTINUE
*
CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'SGELSD'
CALL SGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, IWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 15 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
RESULT( 15 ) = ZERO
END IF
*
* Test 16: Compute error in solution
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 16 ) )
*
* Test 17: Check norm of r'*A
*
RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 17 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 18: Check if x is in the rowspace of A
*
RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 18 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 90 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
$ ITYPE, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
90 CONTINUE
NRUN = NRUN + 12
*
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
$ ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
$ ', type', I2, ', test(', I2, ')=', G12.5 )
9997 FORMAT( ' TRANS=''', A1,' M=', I5, ', N=', I5, ', NRHS=', I4,
$ ', MB=', I4,', NB=', I4,', type', I2,
$ ', test(', I2, ')=', G12.5 )
*
DEALLOCATE( WORK )
DEALLOCATE( IWORK )
RETURN
*
* End of SDRVLS
*
END