Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

465 lines
15 KiB

2 years ago
*> \brief \b SERRPO
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SERRPO( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SERRPO tests the error exits for the REAL routines
*> for symmetric positive definite matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SERRPO( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER I, INFO, J
REAL ANRM, RCOND
* ..
* .. Local Arrays ..
INTEGER IW( NMAX )
REAL A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ R1( NMAX ), R2( NMAX ), W( 3*NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, SPBCON, SPBEQU, SPBRFS, SPBTF2,
$ SPBTRF, SPBTRS, SPOCON, SPOEQU, SPORFS, SPOTF2,
$ SPOTRF, SPOTRI, SPOTRS, SPPCON, SPPEQU, SPPRFS,
$ SPPTRF, SPPTRI, SPPTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = 1. / REAL( I+J )
AF( I, J ) = 1. / REAL( I+J )
10 CONTINUE
B( J ) = 0.
R1( J ) = 0.
R2( J ) = 0.
W( J ) = 0.
X( J ) = 0.
IW( J ) = J
20 CONTINUE
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'PO' ) ) THEN
*
* Test error exits of the routines that use the Cholesky
* decomposition of a symmetric positive definite matrix.
*
* SPOTRF
*
SRNAMT = 'SPOTRF'
INFOT = 1
CALL SPOTRF( '/', 0, A, 1, INFO )
CALL CHKXER( 'SPOTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPOTRF( 'U', -1, A, 1, INFO )
CALL CHKXER( 'SPOTRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SPOTRF( 'U', 2, A, 1, INFO )
CALL CHKXER( 'SPOTRF', INFOT, NOUT, LERR, OK )
*
* SPOTF2
*
SRNAMT = 'SPOTF2'
INFOT = 1
CALL SPOTF2( '/', 0, A, 1, INFO )
CALL CHKXER( 'SPOTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPOTF2( 'U', -1, A, 1, INFO )
CALL CHKXER( 'SPOTF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SPOTF2( 'U', 2, A, 1, INFO )
CALL CHKXER( 'SPOTF2', INFOT, NOUT, LERR, OK )
*
* SPOTRI
*
SRNAMT = 'SPOTRI'
INFOT = 1
CALL SPOTRI( '/', 0, A, 1, INFO )
CALL CHKXER( 'SPOTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPOTRI( 'U', -1, A, 1, INFO )
CALL CHKXER( 'SPOTRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SPOTRI( 'U', 2, A, 1, INFO )
CALL CHKXER( 'SPOTRI', INFOT, NOUT, LERR, OK )
*
* SPOTRS
*
SRNAMT = 'SPOTRS'
INFOT = 1
CALL SPOTRS( '/', 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPOTRS( 'U', -1, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPOTRS( 'U', 0, -1, A, 1, B, 1, INFO )
CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SPOTRS( 'U', 2, 1, A, 1, B, 2, INFO )
CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SPOTRS( 'U', 2, 1, A, 2, B, 1, INFO )
CALL CHKXER( 'SPOTRS', INFOT, NOUT, LERR, OK )
*
* SPORFS
*
SRNAMT = 'SPORFS'
INFOT = 1
CALL SPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL SPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPORFS', INFOT, NOUT, LERR, OK )
*
* SPOCON
*
SRNAMT = 'SPOCON'
INFOT = 1
CALL SPOCON( '/', 0, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPOCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPOCON( 'U', -1, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPOCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SPOCON( 'U', 2, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPOCON', INFOT, NOUT, LERR, OK )
*
* SPOEQU
*
SRNAMT = 'SPOEQU'
INFOT = 1
CALL SPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'SPOEQU', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'SPOEQU', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN
*
* Test error exits of the routines that use the Cholesky
* decomposition of a symmetric positive definite packed matrix.
*
* SPPTRF
*
SRNAMT = 'SPPTRF'
INFOT = 1
CALL SPPTRF( '/', 0, A, INFO )
CALL CHKXER( 'SPPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPPTRF( 'U', -1, A, INFO )
CALL CHKXER( 'SPPTRF', INFOT, NOUT, LERR, OK )
*
* SPPTRI
*
SRNAMT = 'SPPTRI'
INFOT = 1
CALL SPPTRI( '/', 0, A, INFO )
CALL CHKXER( 'SPPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPPTRI( 'U', -1, A, INFO )
CALL CHKXER( 'SPPTRI', INFOT, NOUT, LERR, OK )
*
* SPPTRS
*
SRNAMT = 'SPPTRS'
INFOT = 1
CALL SPPTRS( '/', 0, 0, A, B, 1, INFO )
CALL CHKXER( 'SPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPPTRS( 'U', -1, 0, A, B, 1, INFO )
CALL CHKXER( 'SPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPPTRS( 'U', 0, -1, A, B, 1, INFO )
CALL CHKXER( 'SPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SPPTRS( 'U', 2, 1, A, B, 1, INFO )
CALL CHKXER( 'SPPTRS', INFOT, NOUT, LERR, OK )
*
* SPPRFS
*
SRNAMT = 'SPPRFS'
INFOT = 1
CALL SPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SPPRFS', INFOT, NOUT, LERR, OK )
*
* SPPCON
*
SRNAMT = 'SPPCON'
INFOT = 1
CALL SPPCON( '/', 0, A, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPPCON( 'U', -1, A, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPPCON', INFOT, NOUT, LERR, OK )
*
* SPPEQU
*
SRNAMT = 'SPPEQU'
INFOT = 1
CALL SPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'SPPEQU', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'SPPEQU', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
*
* Test error exits of the routines that use the Cholesky
* decomposition of a symmetric positive definite band matrix.
*
* SPBTRF
*
SRNAMT = 'SPBTRF'
INFOT = 1
CALL SPBTRF( '/', 0, 0, A, 1, INFO )
CALL CHKXER( 'SPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPBTRF( 'U', -1, 0, A, 1, INFO )
CALL CHKXER( 'SPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPBTRF( 'U', 1, -1, A, 1, INFO )
CALL CHKXER( 'SPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SPBTRF( 'U', 2, 1, A, 1, INFO )
CALL CHKXER( 'SPBTRF', INFOT, NOUT, LERR, OK )
*
* SPBTF2
*
SRNAMT = 'SPBTF2'
INFOT = 1
CALL SPBTF2( '/', 0, 0, A, 1, INFO )
CALL CHKXER( 'SPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPBTF2( 'U', -1, 0, A, 1, INFO )
CALL CHKXER( 'SPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPBTF2( 'U', 1, -1, A, 1, INFO )
CALL CHKXER( 'SPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SPBTF2( 'U', 2, 1, A, 1, INFO )
CALL CHKXER( 'SPBTF2', INFOT, NOUT, LERR, OK )
*
* SPBTRS
*
SRNAMT = 'SPBTRS'
INFOT = 1
CALL SPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO )
CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO )
CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO )
CALL CHKXER( 'SPBTRS', INFOT, NOUT, LERR, OK )
*
* SPBRFS
*
SRNAMT = 'SPBRFS'
INFOT = 1
CALL SPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SPBRFS', INFOT, NOUT, LERR, OK )
*
* SPBCON
*
SRNAMT = 'SPBCON'
INFOT = 1
CALL SPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPBCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPBCON', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPBCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SPBCON', INFOT, NOUT, LERR, OK )
*
* SPBEQU
*
SRNAMT = 'SPBEQU'
INFOT = 1
CALL SPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'SPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'SPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'SPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'SPBEQU', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of SERRPO
*
END