Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

670 lines
23 KiB

2 years ago
*> \brief \b SERRSY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SERRSY( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SERRSY tests the error exits for the REAL routines
*> for symmetric indefinite matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SERRSY( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER I, INFO, J
REAL ANRM, RCOND
* ..
* .. Local Arrays ..
INTEGER IP( NMAX ), IW( NMAX )
REAL A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ E( NMAX ), R1( NMAX ), R2( NMAX ), W( 3*NMAX ),
$ X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, SSPCON, SSPRFS, SSPTRF, SSPTRI,
$ SSPTRS, SSYCON, SSYCON_3, SSYCON_ROOK, SSYRFS,
$ SSYTF2_RK, SSYTF2_ROOK, SSYTRF, SSYTRF_RK,
$ SSYTRF_ROOK, SSYTRI, SSYTF2, SSYTRI_3,
$ SSYTRI_3X, SSYTRI_ROOK, SSYTRF_AA, SSYTRI2,
$ SSYTRI2X, SSYTRS, SSYTRS_3, SSYTRS_ROOK,
$ SSYTRS_AA, SSYTRF_AA_2STAGE, SSYTRS_AA_2STAGE
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = 1. / REAL( I+J )
AF( I, J ) = 1. / REAL( I+J )
10 CONTINUE
B( J ) = 0.E+0
E( J ) = 0.E+0
R1( J ) = 0.E+0
R2( J ) = 0.E+0
W( J ) = 0.E+0
X( J ) = 0.E+0
IP( J ) = J
IW( J ) = J
20 CONTINUE
ANRM = 1.0
RCOND = 1.0
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) pivoting.
*
* SSYTRF
*
SRNAMT = 'SSYTRF'
INFOT = 1
CALL SSYTRF( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRF( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRF( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'SSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYTRF( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'SSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYTRF( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'SSYTRF', INFOT, NOUT, LERR, OK )
*
* SSYTF2
*
SRNAMT = 'SSYTF2'
INFOT = 1
CALL SSYTF2( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'SSYTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTF2( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'SSYTF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTF2( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'SSYTF2', INFOT, NOUT, LERR, OK )
*
* SSYTRI
*
SRNAMT = 'SSYTRI'
INFOT = 1
CALL SSYTRI( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'SSYTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRI( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'SSYTRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'SSYTRI', INFOT, NOUT, LERR, OK )
*
* SSYTRI2
*
SRNAMT = 'SSYTRI2'
INFOT = 1
CALL SSYTRI2( '/', 0, A, 1, IP, W, IW(1), INFO )
CALL CHKXER( 'SSYTRI2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRI2( 'U', -1, A, 1, IP, W, IW(1), INFO )
CALL CHKXER( 'SSYTRI2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRI2( 'U', 2, A, 1, IP, W, IW(1), INFO )
CALL CHKXER( 'SSYTRI2', INFOT, NOUT, LERR, OK )
*
* SSYTRI2X
*
SRNAMT = 'SSYTRI2X'
INFOT = 1
CALL SSYTRI2X( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI2X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRI2X( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI2X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRI2X( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI2X', INFOT, NOUT, LERR, OK )
*
* SSYTRS
*
SRNAMT = 'SSYTRS'
INFOT = 1
CALL SSYTRS( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRS( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYTRS( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYTRS( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'SSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSYTRS( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS', INFOT, NOUT, LERR, OK )
*
* SSYRFS
*
SRNAMT = 'SSYRFS'
INFOT = 1
CALL SSYRFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYRFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, IW, INFO )
CALL CHKXER( 'SSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYRFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, IW, INFO )
CALL CHKXER( 'SSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYRFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYRFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL SSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'SSYRFS', INFOT, NOUT, LERR, OK )
*
* SSYCON
*
SRNAMT = 'SSYCON'
INFOT = 1
CALL SSYCON( '/', 0, A, 1, IP, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SSYCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYCON( 'U', -1, A, 1, IP, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SSYCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYCON( 'U', 2, A, 1, IP, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SSYCON', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SSYCON( 'U', 1, A, 1, IP, -1.0, RCOND, W, IW, INFO )
CALL CHKXER( 'SSYCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with rook
* (bounded Bunch-Kaufman) pivoting.
*
* SSYTRF_ROOK
*
SRNAMT = 'SSYTRF_ROOK'
INFOT = 1
CALL SSYTRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'SSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYTRF_ROOK( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'SSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYTRF_ROOK( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'SSYTRF_ROOK', INFOT, NOUT, LERR, OK )
*
* SSYTF2_ROOK
*
SRNAMT = 'SSYTF2_ROOK'
INFOT = 1
CALL SSYTF2_ROOK( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'SSYTF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTF2_ROOK( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'SSYTF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTF2_ROOK( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'SSYTF2_ROOK', INFOT, NOUT, LERR, OK )
*
* SSYTRI_ROOK
*
SRNAMT = 'SSYTRI_ROOK'
INFOT = 1
CALL SSYTRI_ROOK( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'SSYTRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRI_ROOK( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'SSYTRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRI_ROOK( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'SSYTRI_ROOK', INFOT, NOUT, LERR, OK )
*
* SSYTRS_ROOK
*
SRNAMT = 'SSYTRS_ROOK'
INFOT = 1
CALL SSYTRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYTRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYTRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'SSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSYTRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS_ROOK', INFOT, NOUT, LERR, OK )
*
* SSYCON_ROOK
*
SRNAMT = 'SSYCON_ROOK'
INFOT = 1
CALL SSYCON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYCON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYCON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SSYCON_ROOK( 'U', 1, A, 1, IP, -1.0, RCOND, W, IW, INFO )
CALL CHKXER( 'SSYCON_ROOK', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SK' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with rook
* (bounded Bunch-Kaufman) pivoting with the new storage
* format for factors L ( or U) and D.
*
* L (or U) is stored in A, diagonal of D is stored on the
* diagonal of A, subdiagonal of D is stored in a separate array E.
*
* SSYTRF_RK
*
SRNAMT = 'SSYTRF_RK'
INFOT = 1
CALL SSYTRF_RK( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRF_RK( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRF_RK( 'U', 2, A, 1, E, IP, W, 4, INFO )
CALL CHKXER( 'SSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSYTRF_RK( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'SSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSYTRF_RK( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'SSYTRF_RK', INFOT, NOUT, LERR, OK )
*
* SSYTF2_RK
*
SRNAMT = 'SSYTF2_RK'
INFOT = 1
CALL SSYTF2_RK( '/', 0, A, 1, E, IP, INFO )
CALL CHKXER( 'SSYTF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTF2_RK( 'U', -1, A, 1, E, IP, INFO )
CALL CHKXER( 'SSYTF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTF2_RK( 'U', 2, A, 1, E, IP, INFO )
CALL CHKXER( 'SSYTF2_RK', INFOT, NOUT, LERR, OK )
*
* SSYTRI_3
*
SRNAMT = 'SSYTRI_3'
INFOT = 1
CALL SSYTRI_3( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRI_3( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRI_3( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSYTRI_3( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'SSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSYTRI_3( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'SSYTRI_3', INFOT, NOUT, LERR, OK )
*
* SSYTRI_3X
*
SRNAMT = 'SSYTRI_3X'
INFOT = 1
CALL SSYTRI_3X( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRI_3X( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRI_3X( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRI_3X', INFOT, NOUT, LERR, OK )
*
* SSYTRS_3
*
SRNAMT = 'SSYTRS_3'
INFOT = 1
CALL SSYTRS_3( '/', 0, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRS_3( 'U', -1, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYTRS_3( 'U', 0, -1, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYTRS_3( 'U', 2, 1, A, 1, E, IP, B, 2, INFO )
CALL CHKXER( 'SSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL SSYTRS_3( 'U', 2, 1, A, 2, E, IP, B, 1, INFO )
CALL CHKXER( 'SSYTRS_3', INFOT, NOUT, LERR, OK )
*
* SSYCON_3
*
SRNAMT = 'SSYCON_3'
INFOT = 1
CALL SSYCON_3( '/', 0, A, 1, E, IP, ANRM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'SSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYCON_3( 'U', -1, A, 1, E, IP, ANRM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'SSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYCON_3( 'U', 2, A, 1, E, IP, ANRM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'SSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYCON_3( 'U', 1, A, 1, E, IP, -1.0E0, RCOND, W, IW,
$ INFO)
CALL CHKXER( 'SSYCON_3', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SA' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with Aasen's algorithm.
*
* SSYTRF_AA
*
SRNAMT = 'SSYTRF_AA'
INFOT = 1
CALL SSYTRF_AA( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRF_AA( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'SSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRF_AA( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'SSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYTRF_AA( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'SSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYTRF_AA( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'SSYTRF_AA', INFOT, NOUT, LERR, OK )
*
* SSYTRS_AA
*
SRNAMT = 'SSYTRS_AA'
INFOT = 1
CALL SSYTRS_AA( '/', 0, 0, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'SSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRS_AA( 'U', -1, 0, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'SSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYTRS_AA( 'U', 0, -1, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'SSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYTRS_AA( 'U', 2, 1, A, 1, IP, B, 2, W, 1, INFO )
CALL CHKXER( 'SSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSYTRS_AA( 'U', 2, 1, A, 2, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'SSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYTRS_AA( 'U', 0, 1, A, 2, IP, B, 1, W, 0, INFO )
CALL CHKXER( 'SSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYTRS_AA( 'U', 0, 1, A, 2, IP, B, 1, W, -2, INFO )
CALL CHKXER( 'SSYTRS_AA', INFOT, NOUT, LERR, OK )
ELSE IF( LSAMEN( 2, C2, 'S2' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with Aasen's algorithm.
*
* SSYTRF_AA_2STAGE
*
SRNAMT = 'SSYTRF_AA_2STAGE'
INFOT = 1
CALL SSYTRF_AA_2STAGE( '/', 0, A, 1, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'SSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRF_AA_2STAGE( 'U', -1, A, 1, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'SSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSYTRF_AA_2STAGE( 'U', 2, A, 1, A, 2, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'SSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'SSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 8, IP, IP, W, 0,
$ INFO )
CALL CHKXER( 'SSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
*
* SSYTRS_AA_2STAGE
*
SRNAMT = 'SSYTRS_AA_2STAGE'
INFOT = 1
CALL SSYTRS_AA_2STAGE( '/', 0, 0, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'SSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSYTRS_AA_2STAGE( 'U', -1, 0, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'SSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSYTRS_AA_2STAGE( 'U', 0, -1, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'SSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSYTRS_AA_2STAGE( 'U', 2, 1, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'SSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'SSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL SSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 8, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'SSYTRS_AA_STAGE', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) pivoting.
*
* SSPTRF
*
SRNAMT = 'SSPTRF'
INFOT = 1
CALL SSPTRF( '/', 0, A, IP, INFO )
CALL CHKXER( 'SSPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSPTRF( 'U', -1, A, IP, INFO )
CALL CHKXER( 'SSPTRF', INFOT, NOUT, LERR, OK )
*
* SSPTRI
*
SRNAMT = 'SSPTRI'
INFOT = 1
CALL SSPTRI( '/', 0, A, IP, W, INFO )
CALL CHKXER( 'SSPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSPTRI( 'U', -1, A, IP, W, INFO )
CALL CHKXER( 'SSPTRI', INFOT, NOUT, LERR, OK )
*
* SSPTRS
*
SRNAMT = 'SSPTRS'
INFOT = 1
CALL SSPTRS( '/', 0, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'SSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSPTRS( 'U', -1, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'SSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSPTRS( 'U', 0, -1, A, IP, B, 1, INFO )
CALL CHKXER( 'SSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL SSPTRS( 'U', 2, 1, A, IP, B, 1, INFO )
CALL CHKXER( 'SSPTRS', INFOT, NOUT, LERR, OK )
*
* SSPRFS
*
SRNAMT = 'SSPRFS'
INFOT = 1
CALL SSPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SSPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SSPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SSPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'SSPRFS', INFOT, NOUT, LERR, OK )
*
* SSPCON
*
SRNAMT = 'SSPCON'
INFOT = 1
CALL SSPCON( '/', 0, A, IP, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SSPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SSPCON( 'U', -1, A, IP, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'SSPCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL SSPCON( 'U', 1, A, IP, -1.0, RCOND, W, IW, INFO )
CALL CHKXER( 'SSPCON', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of SERRSY
*
END