You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
5.4 KiB
210 lines
5.4 KiB
2 years ago
|
*> \brief \b SSPT01
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER LDC, N
|
||
|
* REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* REAL A( * ), AFAC( * ), C( LDC, * ), RWORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SSPT01 reconstructs a symmetric indefinite packed matrix A from its
|
||
|
*> block L*D*L' or U*D*U' factorization and computes the residual
|
||
|
*> norm( C - A ) / ( N * norm(A) * EPS ),
|
||
|
*> where C is the reconstructed matrix and EPS is the machine epsilon.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the upper or lower triangular part of the
|
||
|
*> symmetric matrix A is stored:
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of rows and columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (N*(N+1)/2)
|
||
|
*> The original symmetric matrix A, stored as a packed
|
||
|
*> triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AFAC
|
||
|
*> \verbatim
|
||
|
*> AFAC is REAL array, dimension (N*(N+1)/2)
|
||
|
*> The factored form of the matrix A, stored as a packed
|
||
|
*> triangular matrix. AFAC contains the block diagonal matrix D
|
||
|
*> and the multipliers used to obtain the factor L or U from the
|
||
|
*> block L*D*L' or U*D*U' factorization as computed by SSPTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> The pivot indices from SSPTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] C
|
||
|
*> \verbatim
|
||
|
*> C is REAL array, dimension (LDC,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDC
|
||
|
*> \verbatim
|
||
|
*> LDC is INTEGER
|
||
|
*> The leading dimension of the array C. LDC >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is REAL
|
||
|
*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
|
||
|
*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup single_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER LDC, N
|
||
|
REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
REAL A( * ), AFAC( * ), C( LDC, * ), RWORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, INFO, J, JC
|
||
|
REAL ANORM, EPS
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
REAL SLAMCH, SLANSP, SLANSY
|
||
|
EXTERNAL LSAME, SLAMCH, SLANSP, SLANSY
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SLAVSP, SLASET
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick exit if N = 0.
|
||
|
*
|
||
|
IF( N.LE.0 ) THEN
|
||
|
RESID = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Determine EPS and the norm of A.
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
ANORM = SLANSP( '1', UPLO, N, A, RWORK )
|
||
|
*
|
||
|
* Initialize C to the identity matrix.
|
||
|
*
|
||
|
CALL SLASET( 'Full', N, N, ZERO, ONE, C, LDC )
|
||
|
*
|
||
|
* Call SLAVSP to form the product D * U' (or D * L' ).
|
||
|
*
|
||
|
CALL SLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
|
||
|
$ LDC, INFO )
|
||
|
*
|
||
|
* Call SLAVSP again to multiply by U ( or L ).
|
||
|
*
|
||
|
CALL SLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
|
||
|
$ LDC, INFO )
|
||
|
*
|
||
|
* Compute the difference C - A .
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
JC = 0
|
||
|
DO 20 J = 1, N
|
||
|
DO 10 I = 1, J
|
||
|
C( I, J ) = C( I, J ) - A( JC+I )
|
||
|
10 CONTINUE
|
||
|
JC = JC + J
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
JC = 1
|
||
|
DO 40 J = 1, N
|
||
|
DO 30 I = J, N
|
||
|
C( I, J ) = C( I, J ) - A( JC+I-J )
|
||
|
30 CONTINUE
|
||
|
JC = JC + N - J + 1
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Compute norm( C - A ) / ( N * norm(A) * EPS )
|
||
|
*
|
||
|
RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK )
|
||
|
*
|
||
|
IF( ANORM.LE.ZERO ) THEN
|
||
|
IF( RESID.NE.ZERO )
|
||
|
$ RESID = ONE / EPS
|
||
|
ELSE
|
||
|
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SSPT01
|
||
|
*
|
||
|
END
|