You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
8.1 KiB
283 lines
8.1 KiB
2 years ago
|
*> \brief \b STBT03
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE STBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
|
||
|
* SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
|
||
|
* RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER DIAG, TRANS, UPLO
|
||
|
* INTEGER KD, LDAB, LDB, LDX, N, NRHS
|
||
|
* REAL RESID, SCALE, TSCAL
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL AB( LDAB, * ), B( LDB, * ), CNORM( * ),
|
||
|
* $ WORK( * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> STBT03 computes the residual for the solution to a scaled triangular
|
||
|
*> system of equations A*x = s*b or A'*x = s*b when A is a
|
||
|
*> triangular band matrix. Here A' is the transpose of A, s is a scalar,
|
||
|
*> and x and b are N by NRHS matrices. The test ratio is the maximum
|
||
|
*> over the number of right hand sides of
|
||
|
*> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
|
||
|
*> where op(A) denotes A or A' and EPS is the machine epsilon.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the matrix A is upper or lower triangular.
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> Specifies the operation applied to A.
|
||
|
*> = 'N': A *x = b (No transpose)
|
||
|
*> = 'T': A'*x = b (Transpose)
|
||
|
*> = 'C': A'*x = b (Conjugate transpose = Transpose)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DIAG
|
||
|
*> \verbatim
|
||
|
*> DIAG is CHARACTER*1
|
||
|
*> Specifies whether or not the matrix A is unit triangular.
|
||
|
*> = 'N': Non-unit triangular
|
||
|
*> = 'U': Unit triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KD
|
||
|
*> \verbatim
|
||
|
*> KD is INTEGER
|
||
|
*> The number of superdiagonals or subdiagonals of the
|
||
|
*> triangular band matrix A. KD >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrices X and B. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AB
|
||
|
*> \verbatim
|
||
|
*> AB is REAL array, dimension (LDAB,N)
|
||
|
*> The upper or lower triangular band matrix A, stored in the
|
||
|
*> first kd+1 rows of the array. The j-th column of A is stored
|
||
|
*> in the j-th column of the array AB as follows:
|
||
|
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
|
||
|
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAB
|
||
|
*> \verbatim
|
||
|
*> LDAB is INTEGER
|
||
|
*> The leading dimension of the array AB. LDAB >= KD+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SCALE
|
||
|
*> \verbatim
|
||
|
*> SCALE is REAL
|
||
|
*> The scaling factor s used in solving the triangular system.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] CNORM
|
||
|
*> \verbatim
|
||
|
*> CNORM is REAL array, dimension (N)
|
||
|
*> The 1-norms of the columns of A, not counting the diagonal.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TSCAL
|
||
|
*> \verbatim
|
||
|
*> TSCAL is REAL
|
||
|
*> The scaling factor used in computing the 1-norms in CNORM.
|
||
|
*> CNORM actually contains the column norms of TSCAL*A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] X
|
||
|
*> \verbatim
|
||
|
*> X is REAL array, dimension (LDX,NRHS)
|
||
|
*> The computed solution vectors for the system of linear
|
||
|
*> equations.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is REAL array, dimension (LDB,NRHS)
|
||
|
*> The right hand side vectors for the system of linear
|
||
|
*> equations.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is REAL
|
||
|
*> The maximum over the number of right hand sides of
|
||
|
*> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup single_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE STBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
|
||
|
$ SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
|
||
|
$ RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER DIAG, TRANS, UPLO
|
||
|
INTEGER KD, LDAB, LDB, LDX, N, NRHS
|
||
|
REAL RESID, SCALE, TSCAL
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL AB( LDAB, * ), B( LDB, * ), CNORM( * ),
|
||
|
$ WORK( * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER IX, J
|
||
|
REAL BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ISAMAX
|
||
|
REAL SLAMCH
|
||
|
EXTERNAL LSAME, ISAMAX, SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SAXPY, SCOPY, SSCAL, STBMV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick exit if N = 0
|
||
|
*
|
||
|
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
|
||
|
RESID = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
SMLNUM = SLAMCH( 'Safe minimum' )
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
*
|
||
|
* Compute the norm of the triangular matrix A using the column
|
||
|
* norms already computed by SLATBS.
|
||
|
*
|
||
|
TNORM = ZERO
|
||
|
IF( LSAME( DIAG, 'N' ) ) THEN
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
DO 10 J = 1, N
|
||
|
TNORM = MAX( TNORM, TSCAL*ABS( AB( KD+1, J ) )+
|
||
|
$ CNORM( J ) )
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
DO 20 J = 1, N
|
||
|
TNORM = MAX( TNORM, TSCAL*ABS( AB( 1, J ) )+CNORM( J ) )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
DO 30 J = 1, N
|
||
|
TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the maximum over the number of right hand sides of
|
||
|
* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
|
||
|
*
|
||
|
RESID = ZERO
|
||
|
DO 40 J = 1, NRHS
|
||
|
CALL SCOPY( N, X( 1, J ), 1, WORK, 1 )
|
||
|
IX = ISAMAX( N, WORK, 1 )
|
||
|
XNORM = MAX( ONE, ABS( X( IX, J ) ) )
|
||
|
XSCAL = ( ONE / XNORM ) / REAL( KD+1 )
|
||
|
CALL SSCAL( N, XSCAL, WORK, 1 )
|
||
|
CALL STBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
|
||
|
CALL SAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 )
|
||
|
IX = ISAMAX( N, WORK, 1 )
|
||
|
ERR = TSCAL*ABS( WORK( IX ) )
|
||
|
IX = ISAMAX( N, X( 1, J ), 1 )
|
||
|
XNORM = ABS( X( IX, J ) )
|
||
|
IF( ERR*SMLNUM.LE.XNORM ) THEN
|
||
|
IF( XNORM.GT.ZERO )
|
||
|
$ ERR = ERR / XNORM
|
||
|
ELSE
|
||
|
IF( ERR.GT.ZERO )
|
||
|
$ ERR = ONE / EPS
|
||
|
END IF
|
||
|
IF( ERR*SMLNUM.LE.TNORM ) THEN
|
||
|
IF( TNORM.GT.ZERO )
|
||
|
$ ERR = ERR / TNORM
|
||
|
ELSE
|
||
|
IF( ERR.GT.ZERO )
|
||
|
$ ERR = ONE / EPS
|
||
|
END IF
|
||
|
RESID = MAX( RESID, ERR )
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of STBT03
|
||
|
*
|
||
|
END
|