You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
845 lines
27 KiB
845 lines
27 KiB
2 years ago
|
*> \brief \b ZCHKHE_ROOK
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZCHKHE_ROOK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
|
||
|
* THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
|
||
|
* XACT, WORK, RWORK, IWORK, NOUT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* LOGICAL TSTERR
|
||
|
* INTEGER NMAX, NN, NNB, NNS, NOUT
|
||
|
* DOUBLE PRECISION THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* LOGICAL DOTYPE( * )
|
||
|
* INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
|
||
|
* DOUBLE PRECISION RWORK( * )
|
||
|
* COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
|
||
|
* $ WORK( * ), X( * ), XACT( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZCHKHE_ROOK tests ZHETRF_ROOK, -TRI_ROOK, -TRS_ROOK,
|
||
|
*> and -CON_ROOK.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] DOTYPE
|
||
|
*> \verbatim
|
||
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
||
|
*> The matrix types to be used for testing. Matrices of type j
|
||
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
||
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NN
|
||
|
*> \verbatim
|
||
|
*> NN is INTEGER
|
||
|
*> The number of values of N contained in the vector NVAL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NVAL
|
||
|
*> \verbatim
|
||
|
*> NVAL is INTEGER array, dimension (NN)
|
||
|
*> The values of the matrix dimension N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NNB
|
||
|
*> \verbatim
|
||
|
*> NNB is INTEGER
|
||
|
*> The number of values of NB contained in the vector NBVAL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NBVAL
|
||
|
*> \verbatim
|
||
|
*> NBVAL is INTEGER array, dimension (NNB)
|
||
|
*> The values of the blocksize NB.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NNS
|
||
|
*> \verbatim
|
||
|
*> NNS is INTEGER
|
||
|
*> The number of values of NRHS contained in the vector NSVAL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NSVAL
|
||
|
*> \verbatim
|
||
|
*> NSVAL is INTEGER array, dimension (NNS)
|
||
|
*> The values of the number of right hand sides NRHS.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] THRESH
|
||
|
*> \verbatim
|
||
|
*> THRESH is DOUBLE PRECISION
|
||
|
*> The threshold value for the test ratios. A result is
|
||
|
*> included in the output file if RESULT >= THRESH. To have
|
||
|
*> every test ratio printed, use THRESH = 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TSTERR
|
||
|
*> \verbatim
|
||
|
*> TSTERR is LOGICAL
|
||
|
*> Flag that indicates whether error exits are to be tested.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NMAX
|
||
|
*> \verbatim
|
||
|
*> NMAX is INTEGER
|
||
|
*> The maximum value permitted for N, used in dimensioning the
|
||
|
*> work arrays.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is CCOMPLEX*16 array, dimension (NMAX*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] AFAC
|
||
|
*> \verbatim
|
||
|
*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] AINV
|
||
|
*> \verbatim
|
||
|
*> AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B
|
||
|
*> \verbatim
|
||
|
*> B is CCOMPLEX*16 array, dimension (NMAX*NSMAX)
|
||
|
*> where NSMAX is the largest entry in NSVAL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] XACT
|
||
|
*> \verbatim
|
||
|
*> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (2*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NOUT
|
||
|
*> \verbatim
|
||
|
*> NOUT is INTEGER
|
||
|
*> The unit number for output.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZCHKHE_ROOK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
|
||
|
$ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
|
||
|
$ XACT, WORK, RWORK, IWORK, NOUT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL TSTERR
|
||
|
INTEGER NMAX, NN, NNB, NNS, NOUT
|
||
|
DOUBLE PRECISION THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
LOGICAL DOTYPE( * )
|
||
|
INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
|
||
|
DOUBLE PRECISION RWORK( * )
|
||
|
COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
|
||
|
$ WORK( * ), X( * ), XACT( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
DOUBLE PRECISION ONEHALF
|
||
|
PARAMETER ( ONEHALF = 0.5D+0 )
|
||
|
DOUBLE PRECISION EIGHT, SEVTEN
|
||
|
PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
|
||
|
COMPLEX*16 CZERO
|
||
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
|
||
|
INTEGER NTYPES
|
||
|
PARAMETER ( NTYPES = 10 )
|
||
|
INTEGER NTESTS
|
||
|
PARAMETER ( NTESTS = 7 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL TRFCON, ZEROT
|
||
|
CHARACTER DIST, TYPE, UPLO, XTYPE
|
||
|
CHARACTER*3 PATH, MATPATH
|
||
|
INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
|
||
|
$ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
|
||
|
$ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
|
||
|
DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, SING_MAX,
|
||
|
$ SING_MIN, RCOND, RCONDC, DTEMP
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
CHARACTER UPLOS( 2 )
|
||
|
INTEGER ISEED( 4 ), ISEEDY( 4 )
|
||
|
DOUBLE PRECISION RESULT( NTESTS )
|
||
|
COMPLEX*16 BLOCK( 2, 2 ), ZDUMMY( 1 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION ZLANGE, ZLANHE, DGET06
|
||
|
EXTERNAL ZLANGE, ZLANHE, DGET06
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ALAERH, ALAHD, ALASUM, ZERRHE, ZGESVD, ZGET04,
|
||
|
$ ZLACPY, ZLARHS, ZLATB4, ZLATMS, ZPOT02,
|
||
|
$ ZPOT03, ZHECON_ROOK, ZHET01_ROOK, ZHETRF_ROOK,
|
||
|
$ ZHETRI_ROOK, ZHETRS_ROOK, XLAENV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC CONJG, MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. Scalars in Common ..
|
||
|
LOGICAL LERR, OK
|
||
|
CHARACTER*32 SRNAMT
|
||
|
INTEGER INFOT, NUNIT
|
||
|
* ..
|
||
|
* .. Common blocks ..
|
||
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
||
|
COMMON / SRNAMC / SRNAMT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA ISEEDY / 1988, 1989, 1990, 1991 /
|
||
|
DATA UPLOS / 'U', 'L' /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Initialize constants and the random number seed.
|
||
|
*
|
||
|
ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
|
||
|
*
|
||
|
* Test path
|
||
|
*
|
||
|
PATH( 1: 1 ) = 'Zomplex precision'
|
||
|
PATH( 2: 3 ) = 'HR'
|
||
|
*
|
||
|
* Path to generate matrices
|
||
|
*
|
||
|
MATPATH( 1: 1 ) = 'Zomplex precision'
|
||
|
MATPATH( 2: 3 ) = 'HE'
|
||
|
*
|
||
|
NRUN = 0
|
||
|
NFAIL = 0
|
||
|
NERRS = 0
|
||
|
DO 10 I = 1, 4
|
||
|
ISEED( I ) = ISEEDY( I )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Test the error exits
|
||
|
*
|
||
|
IF( TSTERR )
|
||
|
$ CALL ZERRHE( PATH, NOUT )
|
||
|
INFOT = 0
|
||
|
*
|
||
|
* Set the minimum block size for which the block routine should
|
||
|
* be used, which will be later returned by ILAENV
|
||
|
*
|
||
|
CALL XLAENV( 2, 2 )
|
||
|
*
|
||
|
* Do for each value of N in NVAL
|
||
|
*
|
||
|
DO 270 IN = 1, NN
|
||
|
N = NVAL( IN )
|
||
|
LDA = MAX( N, 1 )
|
||
|
XTYPE = 'N'
|
||
|
NIMAT = NTYPES
|
||
|
IF( N.LE.0 )
|
||
|
$ NIMAT = 1
|
||
|
*
|
||
|
IZERO = 0
|
||
|
*
|
||
|
* Do for each value of matrix type IMAT
|
||
|
*
|
||
|
DO 260 IMAT = 1, NIMAT
|
||
|
*
|
||
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
||
|
*
|
||
|
IF( .NOT.DOTYPE( IMAT ) )
|
||
|
$ GO TO 260
|
||
|
*
|
||
|
* Skip types 3, 4, 5, or 6 if the matrix size is too small.
|
||
|
*
|
||
|
ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
|
||
|
IF( ZEROT .AND. N.LT.IMAT-2 )
|
||
|
$ GO TO 260
|
||
|
*
|
||
|
* Do first for UPLO = 'U', then for UPLO = 'L'
|
||
|
*
|
||
|
DO 250 IUPLO = 1, 2
|
||
|
UPLO = UPLOS( IUPLO )
|
||
|
*
|
||
|
* Begin generate the test matrix A.
|
||
|
*
|
||
|
* Set up parameters with ZLATB4 for the matrix generator
|
||
|
* based on the type of matrix to be generated.
|
||
|
*
|
||
|
CALL ZLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU, ANORM,
|
||
|
$ MODE, CNDNUM, DIST )
|
||
|
*
|
||
|
* Generate a matrix with ZLATMS.
|
||
|
*
|
||
|
SRNAMT = 'ZLATMS'
|
||
|
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
|
||
|
$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
|
||
|
$ WORK, INFO )
|
||
|
*
|
||
|
* Check error code from ZLATMS and handle error.
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N,
|
||
|
$ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
|
||
|
*
|
||
|
* Skip all tests for this generated matrix
|
||
|
*
|
||
|
GO TO 250
|
||
|
END IF
|
||
|
*
|
||
|
* For matrix types 3-6, zero one or more rows and
|
||
|
* columns of the matrix to test that INFO is returned
|
||
|
* correctly.
|
||
|
*
|
||
|
IF( ZEROT ) THEN
|
||
|
IF( IMAT.EQ.3 ) THEN
|
||
|
IZERO = 1
|
||
|
ELSE IF( IMAT.EQ.4 ) THEN
|
||
|
IZERO = N
|
||
|
ELSE
|
||
|
IZERO = N / 2 + 1
|
||
|
END IF
|
||
|
*
|
||
|
IF( IMAT.LT.6 ) THEN
|
||
|
*
|
||
|
* Set row and column IZERO to zero.
|
||
|
*
|
||
|
IF( IUPLO.EQ.1 ) THEN
|
||
|
IOFF = ( IZERO-1 )*LDA
|
||
|
DO 20 I = 1, IZERO - 1
|
||
|
A( IOFF+I ) = CZERO
|
||
|
20 CONTINUE
|
||
|
IOFF = IOFF + IZERO
|
||
|
DO 30 I = IZERO, N
|
||
|
A( IOFF ) = CZERO
|
||
|
IOFF = IOFF + LDA
|
||
|
30 CONTINUE
|
||
|
ELSE
|
||
|
IOFF = IZERO
|
||
|
DO 40 I = 1, IZERO - 1
|
||
|
A( IOFF ) = CZERO
|
||
|
IOFF = IOFF + LDA
|
||
|
40 CONTINUE
|
||
|
IOFF = IOFF - IZERO
|
||
|
DO 50 I = IZERO, N
|
||
|
A( IOFF+I ) = CZERO
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
IF( IUPLO.EQ.1 ) THEN
|
||
|
*
|
||
|
* Set the first IZERO rows and columns to zero.
|
||
|
*
|
||
|
IOFF = 0
|
||
|
DO 70 J = 1, N
|
||
|
I2 = MIN( J, IZERO )
|
||
|
DO 60 I = 1, I2
|
||
|
A( IOFF+I ) = CZERO
|
||
|
60 CONTINUE
|
||
|
IOFF = IOFF + LDA
|
||
|
70 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Set the last IZERO rows and columns to zero.
|
||
|
*
|
||
|
IOFF = 0
|
||
|
DO 90 J = 1, N
|
||
|
I1 = MAX( J, IZERO )
|
||
|
DO 80 I = I1, N
|
||
|
A( IOFF+I ) = CZERO
|
||
|
80 CONTINUE
|
||
|
IOFF = IOFF + LDA
|
||
|
90 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
ELSE
|
||
|
IZERO = 0
|
||
|
END IF
|
||
|
*
|
||
|
* End generate the test matrix A.
|
||
|
*
|
||
|
*
|
||
|
* Do for each value of NB in NBVAL
|
||
|
*
|
||
|
DO 240 INB = 1, NNB
|
||
|
*
|
||
|
* Set the optimal blocksize, which will be later
|
||
|
* returned by ILAENV.
|
||
|
*
|
||
|
NB = NBVAL( INB )
|
||
|
CALL XLAENV( 1, NB )
|
||
|
*
|
||
|
* Copy the test matrix A into matrix AFAC which
|
||
|
* will be factorized in place. This is needed to
|
||
|
* preserve the test matrix A for subsequent tests.
|
||
|
*
|
||
|
CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
|
||
|
*
|
||
|
* Compute the L*D*L**T or U*D*U**T factorization of the
|
||
|
* matrix. IWORK stores details of the interchanges and
|
||
|
* the block structure of D. AINV is a work array for
|
||
|
* block factorization, LWORK is the length of AINV.
|
||
|
*
|
||
|
LWORK = MAX( 2, NB )*LDA
|
||
|
SRNAMT = 'ZHETRF_ROOK'
|
||
|
CALL ZHETRF_ROOK( UPLO, N, AFAC, LDA, IWORK, AINV,
|
||
|
$ LWORK, INFO )
|
||
|
*
|
||
|
* Adjust the expected value of INFO to account for
|
||
|
* pivoting.
|
||
|
*
|
||
|
K = IZERO
|
||
|
IF( K.GT.0 ) THEN
|
||
|
100 CONTINUE
|
||
|
IF( IWORK( K ).LT.0 ) THEN
|
||
|
IF( IWORK( K ).NE.-K ) THEN
|
||
|
K = -IWORK( K )
|
||
|
GO TO 100
|
||
|
END IF
|
||
|
ELSE IF( IWORK( K ).NE.K ) THEN
|
||
|
K = IWORK( K )
|
||
|
GO TO 100
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Check error code from ZHETRF_ROOK and handle error.
|
||
|
*
|
||
|
IF( INFO.NE.K)
|
||
|
$ CALL ALAERH( PATH, 'ZHETRF_ROOK', INFO, K,
|
||
|
$ UPLO, N, N, -1, -1, NB, IMAT,
|
||
|
$ NFAIL, NERRS, NOUT )
|
||
|
*
|
||
|
* Set the condition estimate flag if the INFO is not 0.
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
TRFCON = .TRUE.
|
||
|
ELSE
|
||
|
TRFCON = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
*+ TEST 1
|
||
|
* Reconstruct matrix from factors and compute residual.
|
||
|
*
|
||
|
CALL ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDA, IWORK,
|
||
|
$ AINV, LDA, RWORK, RESULT( 1 ) )
|
||
|
NT = 1
|
||
|
*
|
||
|
*+ TEST 2
|
||
|
* Form the inverse and compute the residual,
|
||
|
* if the factorization was competed without INFO > 0
|
||
|
* (i.e. there is no zero rows and columns).
|
||
|
* Do it only for the first block size.
|
||
|
*
|
||
|
IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN
|
||
|
CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
|
||
|
SRNAMT = 'ZHETRI_ROOK'
|
||
|
CALL ZHETRI_ROOK( UPLO, N, AINV, LDA, IWORK, WORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Check error code from ZHETRI_ROOK and handle error.
|
||
|
*
|
||
|
IF( INFO.NE.0 )
|
||
|
$ CALL ALAERH( PATH, 'ZHETRI_ROOK', INFO, -1,
|
||
|
$ UPLO, N, N, -1, -1, -1, IMAT,
|
||
|
$ NFAIL, NERRS, NOUT )
|
||
|
*
|
||
|
* Compute the residual for a Hermitian matrix times
|
||
|
* its inverse.
|
||
|
*
|
||
|
CALL ZPOT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA,
|
||
|
$ RWORK, RCONDC, RESULT( 2 ) )
|
||
|
NT = 2
|
||
|
END IF
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
DO 110 K = 1, NT
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALAHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K,
|
||
|
$ RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
110 CONTINUE
|
||
|
NRUN = NRUN + NT
|
||
|
*
|
||
|
*+ TEST 3
|
||
|
* Compute largest element in U or L
|
||
|
*
|
||
|
RESULT( 3 ) = ZERO
|
||
|
DTEMP = ZERO
|
||
|
*
|
||
|
CONST = ( ( ALPHA**2-ONE ) / ( ALPHA**2-ONEHALF ) ) /
|
||
|
$ ( ONE-ALPHA )
|
||
|
*
|
||
|
IF( IUPLO.EQ.1 ) THEN
|
||
|
*
|
||
|
* Compute largest element in U
|
||
|
*
|
||
|
K = N
|
||
|
120 CONTINUE
|
||
|
IF( K.LE.1 )
|
||
|
$ GO TO 130
|
||
|
*
|
||
|
IF( IWORK( K ).GT.ZERO ) THEN
|
||
|
*
|
||
|
* Get max absolute value from elements
|
||
|
* in column k in U
|
||
|
*
|
||
|
DTEMP = ZLANGE( 'M', K-1, 1,
|
||
|
$ AFAC( ( K-1 )*LDA+1 ), LDA, RWORK )
|
||
|
ELSE
|
||
|
*
|
||
|
* Get max absolute value from elements
|
||
|
* in columns k and k-1 in U
|
||
|
*
|
||
|
DTEMP = ZLANGE( 'M', K-2, 2,
|
||
|
$ AFAC( ( K-2 )*LDA+1 ), LDA, RWORK )
|
||
|
K = K - 1
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* DTEMP should be bounded by CONST
|
||
|
*
|
||
|
DTEMP = DTEMP - CONST + THRESH
|
||
|
IF( DTEMP.GT.RESULT( 3 ) )
|
||
|
$ RESULT( 3 ) = DTEMP
|
||
|
*
|
||
|
K = K - 1
|
||
|
*
|
||
|
GO TO 120
|
||
|
130 CONTINUE
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute largest element in L
|
||
|
*
|
||
|
K = 1
|
||
|
140 CONTINUE
|
||
|
IF( K.GE.N )
|
||
|
$ GO TO 150
|
||
|
*
|
||
|
IF( IWORK( K ).GT.ZERO ) THEN
|
||
|
*
|
||
|
* Get max absolute value from elements
|
||
|
* in column k in L
|
||
|
*
|
||
|
DTEMP = ZLANGE( 'M', N-K, 1,
|
||
|
$ AFAC( ( K-1 )*LDA+K+1 ), LDA, RWORK )
|
||
|
ELSE
|
||
|
*
|
||
|
* Get max absolute value from elements
|
||
|
* in columns k and k+1 in L
|
||
|
*
|
||
|
DTEMP = ZLANGE( 'M', N-K-1, 2,
|
||
|
$ AFAC( ( K-1 )*LDA+K+2 ), LDA, RWORK )
|
||
|
K = K + 1
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* DTEMP should be bounded by CONST
|
||
|
*
|
||
|
DTEMP = DTEMP - CONST + THRESH
|
||
|
IF( DTEMP.GT.RESULT( 3 ) )
|
||
|
$ RESULT( 3 ) = DTEMP
|
||
|
*
|
||
|
K = K + 1
|
||
|
*
|
||
|
GO TO 140
|
||
|
150 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
*
|
||
|
*+ TEST 4
|
||
|
* Compute largest 2-Norm (condition number)
|
||
|
* of 2-by-2 diag blocks
|
||
|
*
|
||
|
RESULT( 4 ) = ZERO
|
||
|
DTEMP = ZERO
|
||
|
*
|
||
|
CONST = ( ( ALPHA**2-ONE ) / ( ALPHA**2-ONEHALF ) )*
|
||
|
$ ( ( ONE + ALPHA ) / ( ONE - ALPHA ) )
|
||
|
CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
|
||
|
*
|
||
|
IF( IUPLO.EQ.1 ) THEN
|
||
|
*
|
||
|
* Loop backward for UPLO = 'U'
|
||
|
*
|
||
|
K = N
|
||
|
160 CONTINUE
|
||
|
IF( K.LE.1 )
|
||
|
$ GO TO 170
|
||
|
*
|
||
|
IF( IWORK( K ).LT.ZERO ) THEN
|
||
|
*
|
||
|
* Get the two singular values
|
||
|
* (real and non-negative) of a 2-by-2 block,
|
||
|
* store them in RWORK array
|
||
|
*
|
||
|
BLOCK( 1, 1 ) = AFAC( ( K-2 )*LDA+K-1 )
|
||
|
BLOCK( 1, 2 ) = AFAC( (K-1)*LDA+K-1 )
|
||
|
BLOCK( 2, 1 ) = CONJG( BLOCK( 1, 2 ) )
|
||
|
BLOCK( 2, 2 ) = AFAC( (K-1)*LDA+K )
|
||
|
*
|
||
|
CALL ZGESVD( 'N', 'N', 2, 2, BLOCK, 2, RWORK,
|
||
|
$ ZDUMMY, 1, ZDUMMY, 1,
|
||
|
$ WORK, 6, RWORK( 3 ), INFO )
|
||
|
*
|
||
|
*
|
||
|
SING_MAX = RWORK( 1 )
|
||
|
SING_MIN = RWORK( 2 )
|
||
|
*
|
||
|
DTEMP = SING_MAX / SING_MIN
|
||
|
*
|
||
|
* DTEMP should be bounded by CONST
|
||
|
*
|
||
|
DTEMP = DTEMP - CONST + THRESH
|
||
|
IF( DTEMP.GT.RESULT( 4 ) )
|
||
|
$ RESULT( 4 ) = DTEMP
|
||
|
K = K - 1
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
K = K - 1
|
||
|
*
|
||
|
GO TO 160
|
||
|
170 CONTINUE
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Loop forward for UPLO = 'L'
|
||
|
*
|
||
|
K = 1
|
||
|
180 CONTINUE
|
||
|
IF( K.GE.N )
|
||
|
$ GO TO 190
|
||
|
*
|
||
|
IF( IWORK( K ).LT.ZERO ) THEN
|
||
|
*
|
||
|
* Get the two singular values
|
||
|
* (real and non-negative) of a 2-by-2 block,
|
||
|
* store them in RWORK array
|
||
|
*
|
||
|
BLOCK( 1, 1 ) = AFAC( ( K-1 )*LDA+K )
|
||
|
BLOCK( 2, 1 ) = AFAC( ( K-1 )*LDA+K+1 )
|
||
|
BLOCK( 1, 2 ) = CONJG( BLOCK( 2, 1 ) )
|
||
|
BLOCK( 2, 2 ) = AFAC( K*LDA+K+1 )
|
||
|
*
|
||
|
CALL ZGESVD( 'N', 'N', 2, 2, BLOCK, 2, RWORK,
|
||
|
$ ZDUMMY, 1, ZDUMMY, 1,
|
||
|
$ WORK, 6, RWORK(3), INFO )
|
||
|
*
|
||
|
SING_MAX = RWORK( 1 )
|
||
|
SING_MIN = RWORK( 2 )
|
||
|
*
|
||
|
DTEMP = SING_MAX / SING_MIN
|
||
|
*
|
||
|
* DTEMP should be bounded by CONST
|
||
|
*
|
||
|
DTEMP = DTEMP - CONST + THRESH
|
||
|
IF( DTEMP.GT.RESULT( 4 ) )
|
||
|
$ RESULT( 4 ) = DTEMP
|
||
|
K = K + 1
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
K = K + 1
|
||
|
*
|
||
|
GO TO 180
|
||
|
190 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
DO 200 K = 3, 4
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALAHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K,
|
||
|
$ RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
200 CONTINUE
|
||
|
NRUN = NRUN + 2
|
||
|
*
|
||
|
* Skip the other tests if this is not the first block
|
||
|
* size.
|
||
|
*
|
||
|
IF( INB.GT.1 )
|
||
|
$ GO TO 240
|
||
|
*
|
||
|
* Do only the condition estimate if INFO is not 0.
|
||
|
*
|
||
|
IF( TRFCON ) THEN
|
||
|
RCONDC = ZERO
|
||
|
GO TO 230
|
||
|
END IF
|
||
|
*
|
||
|
* Do for each value of NRHS in NSVAL.
|
||
|
*
|
||
|
DO 220 IRHS = 1, NNS
|
||
|
NRHS = NSVAL( IRHS )
|
||
|
*
|
||
|
* Begin loop over NRHS values
|
||
|
*
|
||
|
*
|
||
|
*+ TEST 5 ( Using TRS_ROOK)
|
||
|
* Solve and compute residual for A * X = B.
|
||
|
*
|
||
|
* Choose a set of NRHS random solution vectors
|
||
|
* stored in XACT and set up the right hand side B
|
||
|
*
|
||
|
SRNAMT = 'ZLARHS'
|
||
|
CALL ZLARHS( MATPATH, XTYPE, UPLO, ' ', N, N,
|
||
|
$ KL, KU, NRHS, A, LDA, XACT, LDA,
|
||
|
$ B, LDA, ISEED, INFO )
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
|
||
|
*
|
||
|
SRNAMT = 'ZHETRS_ROOK'
|
||
|
CALL ZHETRS_ROOK( UPLO, N, NRHS, AFAC, LDA, IWORK,
|
||
|
$ X, LDA, INFO )
|
||
|
*
|
||
|
* Check error code from ZHETRS_ROOK and handle error.
|
||
|
*
|
||
|
IF( INFO.NE.0 )
|
||
|
$ CALL ALAERH( PATH, 'ZHETRS_ROOK', INFO, 0,
|
||
|
$ UPLO, N, N, -1, -1, NRHS, IMAT,
|
||
|
$ NFAIL, NERRS, NOUT )
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
|
||
|
*
|
||
|
* Compute the residual for the solution
|
||
|
*
|
||
|
CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
|
||
|
$ LDA, RWORK, RESULT( 5 ) )
|
||
|
*
|
||
|
*+ TEST 6
|
||
|
* Check solution from generated exact solution.
|
||
|
*
|
||
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
||
|
$ RESULT( 6 ) )
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
DO 210 K = 5, 6
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALAHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS,
|
||
|
$ IMAT, K, RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
210 CONTINUE
|
||
|
NRUN = NRUN + 2
|
||
|
*
|
||
|
* End do for each value of NRHS in NSVAL.
|
||
|
*
|
||
|
220 CONTINUE
|
||
|
*
|
||
|
*+ TEST 7
|
||
|
* Get an estimate of RCOND = 1/CNDNUM.
|
||
|
*
|
||
|
230 CONTINUE
|
||
|
ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
|
||
|
SRNAMT = 'ZHECON_ROOK'
|
||
|
CALL ZHECON_ROOK( UPLO, N, AFAC, LDA, IWORK, ANORM,
|
||
|
$ RCOND, WORK, INFO )
|
||
|
*
|
||
|
* Check error code from ZHECON_ROOK and handle error.
|
||
|
*
|
||
|
IF( INFO.NE.0 )
|
||
|
$ CALL ALAERH( PATH, 'ZHECON_ROOK', INFO, 0,
|
||
|
$ UPLO, N, N, -1, -1, -1, IMAT,
|
||
|
$ NFAIL, NERRS, NOUT )
|
||
|
*
|
||
|
* Compute the test ratio to compare values of RCOND
|
||
|
*
|
||
|
RESULT( 7 ) = DGET06( RCOND, RCONDC )
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
IF( RESULT( 7 ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALAHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9997 )UPLO, N, IMAT, 7,
|
||
|
$ RESULT( 7 )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
NRUN = NRUN + 1
|
||
|
240 CONTINUE
|
||
|
*
|
||
|
250 CONTINUE
|
||
|
260 CONTINUE
|
||
|
270 CONTINUE
|
||
|
*
|
||
|
* Print a summary of the results.
|
||
|
*
|
||
|
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
||
|
*
|
||
|
9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ',
|
||
|
$ I2, ', test ', I2, ', ratio =', G12.5 )
|
||
|
9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
|
||
|
$ I2, ', test ', I2, ', ratio =', G12.5 )
|
||
|
9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
|
||
|
$ ', test ', I2, ', ratio =', G12.5 )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZCHKHE_ROOK
|
||
|
*
|
||
|
END
|