Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1030 lines
41 KiB

2 years ago
*> \brief \b ZDRVLS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
* COPYB, C, S, COPYS, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NM, NN, NNB, NNS, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER MVAL( * ), NBVAL( * ), NSVAL( * ),
* $ NVAL( * ), NXVAL( * )
* DOUBLE PRECISION COPYS( * ), S( * )
* COMPLEX*16 A( * ), B( * ), C( * ), COPYA( * ), COPYB( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVLS tests the least squares driver routines ZGELS, ZGELST,
*> ZGETSLS, ZGELSS, ZGELSY and ZGELSD.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> The matrix of type j is generated as follows:
*> j=1: A = U*D*V where U and V are random unitary matrices
*> and D has random entries (> 0.1) taken from a uniform
*> distribution (0,1). A is full rank.
*> j=2: The same of 1, but A is scaled up.
*> j=3: The same of 1, but A is scaled down.
*> j=4: A = U*D*V where U and V are random unitary matrices
*> and D has 3*min(M,N)/4 random entries (> 0.1) taken
*> from a uniform distribution (0,1) and the remaining
*> entries set to 0. A is rank-deficient.
*> j=5: The same of 4, but A is scaled up.
*> j=6: The same of 5, but A is scaled down.
*> \endverbatim
*>
*> \param[in] NM
*> \verbatim
*> NM is INTEGER
*> The number of values of M contained in the vector MVAL.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NNB
*> \verbatim
*> NNB is INTEGER
*> The number of values of NB and NX contained in the
*> vectors NBVAL and NXVAL. The blocking parameters are used
*> in pairs (NB,NX).
*> \endverbatim
*>
*> \param[in] NBVAL
*> \verbatim
*> NBVAL is INTEGER array, dimension (NNB)
*> The values of the blocksize NB.
*> \endverbatim
*>
*> \param[in] NXVAL
*> \verbatim
*> NXVAL is INTEGER array, dimension (NNB)
*> The values of the crossover point NX.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (MMAX*NMAX)
*> where MMAX is the maximum value of M in MVAL and NMAX is the
*> maximum value of N in NVAL.
*> \endverbatim
*>
*> \param[out] COPYA
*> \verbatim
*> COPYA is COMPLEX*16 array, dimension (MMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (MMAX*NSMAX)
*> where MMAX is the maximum value of M in MVAL and NSMAX is the
*> maximum value of NRHS in NSVAL.
*> \endverbatim
*>
*> \param[out] COPYB
*> \verbatim
*> COPYB is COMPLEX*16 array, dimension (MMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is COMPLEX*16 array, dimension (MMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension
*> (min(MMAX,NMAX))
*> \endverbatim
*>
*> \param[out] COPYS
*> \verbatim
*> COPYS is DOUBLE PRECISION array, dimension
*> (min(MMAX,NMAX))
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
$ COPYB, C, S, COPYS, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NM, NN, NNB, NNS, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER MVAL( * ), NBVAL( * ), NSVAL( * ),
$ NVAL( * ), NXVAL( * )
DOUBLE PRECISION COPYS( * ), S( * )
COMPLEX*16 A( * ), B( * ), C( * ), COPYA( * ), COPYB( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
COMPLEX*16 CONE, CZERO
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
$ CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
CHARACTER TRANS
CHARACTER*3 PATH
INTEGER CRANK, I, IM, IMB, IN, INB, INFO, INS, IRANK,
$ ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK, LRWORK,
$ LWORK_ZGELS, LWORK_ZGELST, LWORK_ZGETSLS,
$ LWORK_ZGELSS, LWORK_ZGELSY, LWORK_ZGELSD,
$ LRWORK_ZGELSY, LRWORK_ZGELSS, LRWORK_ZGELSD
DOUBLE PRECISION EPS, NORMA, NORMB, RCOND
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 ), IWQ( 1 )
DOUBLE PRECISION RESULT( NTESTS ), RWQ( 1 )
COMPLEX*16 WQ( 1 )
* ..
* .. Allocatable Arrays ..
COMPLEX*16, ALLOCATABLE :: WORK (:)
DOUBLE PRECISION, ALLOCATABLE :: RWORK (:), WORK2 (:)
INTEGER, ALLOCATABLE :: IWORK (:)
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17
EXTERNAL DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, ZERRLS, ZGELS,
$ ZGELSD, ZGELSS, ZGELST, ZGELSY, ZGEMM,
$ ZGETSLS, ZLACPY, ZLARNV, ZQRT13, ZQRT15,
$ ZQRT16, ZDSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, INT, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, IOUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, IOUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Zomplex precision'
PATH( 2: 3 ) = 'LS'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
EPS = DLAMCH( 'Epsilon' )
*
* Threshold for rank estimation
*
RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
*
* Test the error exits
*
CALL XLAENV( 9, SMLSIZ )
IF( TSTERR )
$ CALL ZERRLS( PATH, NOUT )
*
* Print the header if NM = 0 or NN = 0 and THRESH = 0.
*
IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
$ CALL ALAHD( NOUT, PATH )
INFOT = 0
*
* Compute maximal workspace needed for all routines
*
NMAX = 0
MMAX = 0
NSMAX = 0
DO I = 1, NM
IF ( MVAL( I ).GT.MMAX ) THEN
MMAX = MVAL( I )
END IF
ENDDO
DO I = 1, NN
IF ( NVAL( I ).GT.NMAX ) THEN
NMAX = NVAL( I )
END IF
ENDDO
DO I = 1, NNS
IF ( NSVAL( I ).GT.NSMAX ) THEN
NSMAX = NSVAL( I )
END IF
ENDDO
M = MMAX
N = NMAX
NRHS = NSMAX
MNMIN = MAX( MIN( M, N ), 1 )
*
* Compute workspace needed for routines
* ZQRT14, ZQRT17 (two side cases), ZQRT15 and ZQRT12
*
LWORK = MAX( 1, ( M+N )*NRHS,
$ ( N+NRHS )*( M+2 ), ( M+NRHS )*( N+2 ),
$ MAX( M+MNMIN, NRHS*MNMIN,2*N+M ),
$ MAX( M*N+4*MNMIN+MAX(M,N), M*N+2*MNMIN+4*N ) )
LRWORK = 1
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
* routines.
*
DO IM = 1, NM
M = MVAL( IM )
LDA = MAX( 1, M )
DO IN = 1, NN
N = NVAL( IN )
MNMIN = MAX(MIN( M, N ),1)
LDB = MAX( 1, M, N )
DO INS = 1, NNS
NRHS = NSVAL( INS )
DO IRANK = 1, 2
DO ISCALE = 1, 3
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( DOTYPE( ITYPE ) ) THEN
IF( IRANK.EQ.1 ) THEN
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
ELSE
TRANS = 'C'
END IF
*
* Compute workspace needed for ZGELS
CALL ZGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_ZGELS = INT ( WQ( 1 ) )
* Compute workspace needed for ZGELST
CALL ZGELST( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_ZGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for ZGETSLS
CALL ZGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_ZGETSLS = INT( WQ( 1 ) )
ENDDO
END IF
* Compute workspace needed for ZGELSY
CALL ZGELSY( M, N, NRHS, A, LDA, B, LDB, IWQ,
$ RCOND, CRANK, WQ, -1, RWQ, INFO )
LWORK_ZGELSY = INT( WQ( 1 ) )
LRWORK_ZGELSY = 2*N
* Compute workspace needed for ZGELSS
CALL ZGELSS( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WQ, -1 , RWQ,
$ INFO )
LWORK_ZGELSS = INT( WQ( 1 ) )
LRWORK_ZGELSS = 5*MNMIN
* Compute workspace needed for ZGELSD
CALL ZGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WQ, -1, RWQ, IWQ,
$ INFO )
LWORK_ZGELSD = INT( WQ( 1 ) )
LRWORK_ZGELSD = INT( RWQ ( 1 ) )
* Compute LIWORK workspace needed for ZGELSY and ZGELSD
LIWORK = MAX( LIWORK, N, IWQ( 1 ) )
* Compute LRWORK workspace needed for ZGELSY, ZGELSS and ZGELSD
LRWORK = MAX( LRWORK, LRWORK_ZGELSY,
$ LRWORK_ZGELSS, LRWORK_ZGELSD )
* Compute LWORK workspace needed for all functions
LWORK = MAX( LWORK, LWORK_ZGELS, LWORK_ZGELST,
$ LWORK_ZGETSLS, LWORK_ZGELSY,
$ LWORK_ZGELSS, LWORK_ZGELSD )
END IF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
*
LWLSY = LWORK
*
ALLOCATE( WORK( LWORK ) )
ALLOCATE( WORK2( 2 * LWORK ) )
ALLOCATE( IWORK( LIWORK ) )
ALLOCATE( RWORK( LRWORK ) )
*
DO 140 IM = 1, NM
M = MVAL( IM )
LDA = MAX( 1, M )
*
DO 130 IN = 1, NN
N = NVAL( IN )
MNMIN = MAX(MIN( M, N ),1)
LDB = MAX( 1, M, N )
MB = (MNMIN+1)
*
DO 120 INS = 1, NNS
NRHS = NSVAL( INS )
*
DO 110 IRANK = 1, 2
DO 100 ISCALE = 1, 3
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 100
* =====================================================
* Begin test ZGELS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'C'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL ZDSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ), WORK,
$ 1 )
END IF
CALL ZGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
$ WORK, LDWORK, CZERO, B, LDB )
CALL ZLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL ZLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'ZGELS '
CALL ZGELS( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELS ', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Test 1: Check correctness of results
* for ZGELS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 1 ) )
*
* Test 2: Check correctness of results
* for ZGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
*
RESULT( 2 ) = ZQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 2 ) = ZQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END IF
* =====================================================
* End test ZGELS
* =====================================================
* =====================================================
* Begin test ZGELST
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'C'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL ZDSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ), WORK,
$ 1 )
END IF
CALL ZGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
$ WORK, LDWORK, CZERO, B, LDB )
CALL ZLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL ZLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'ZGELST'
CALL ZGELST( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Test 3: Check correctness of results
* for ZGELST, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 3 ) )
*
* Test 4: Check correctness of results
* for ZGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
*
RESULT( 4 ) = ZQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 4 ) = ZQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END IF
* =====================================================
* End test ZGELST
* =====================================================
* =====================================================
* Begin test ZGELSTSLS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes MB.
*
DO INB = 1, NNB
MB = NBVAL( INB )
CALL XLAENV( 1, MB )
*
* Loop for testing different block sizes NB.
*
DO IMB = 1, NNB
NB = NBVAL( IMB )
CALL XLAENV( 2, NB )
*
* Loop for testing non-transposed
* and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'C'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL ZSCAL( NCOLS*NRHS,
$ CONE / DBLE( NCOLS ),
$ WORK, 1 )
END IF
CALL ZGEMM( TRANS, 'No transpose',
$ NROWS, NRHS, NCOLS, CONE,
$ COPYA, LDA, WORK, LDWORK,
$ CZERO, B, LDB )
CALL ZLACPY( 'Full', NROWS, NRHS,
$ B, LDB, COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL ZLACPY( 'Full', M, N,
$ COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'ZGETSLS '
CALL ZGETSLS( TRANS, M, N, NRHS, A,
$ LDA, B, LDB, WORK, LWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGETSLS ', INFO,
$ 0, TRANS, M, N, NRHS,
$ -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 5: Check correctness of results
* for ZGETSLS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS,
$ COPYA, LDA, B, LDB,
$ C, LDB, WORK2,
$ RESULT( 5 ) )
*
* Test 6: Check correctness of results
* for ZGETSLS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 6 ) = ZQRT17( TRANS, 1, M,
$ N, NRHS, COPYA, LDA,
$ B, LDB, COPYB, LDB,
$ C, WORK, LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 6 ) = ZQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B,
$ LDB, WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 5, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )TRANS,
$ M, N, NRHS, MB, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END DO
END IF
* =====================================================
* End test ZGELSTSLS
* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
*
CALL ZQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
$ COPYB, LDB, COPYS, RANK, NORMA, NORMB,
$ ISEED, WORK, LWORK )
*
* workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*
LDWORK = MAX( 1, M )
*
* Loop for testing different block sizes.
*
DO 90 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Test ZGELSY
*
* ZGELSY: Compute the minimum-norm solution
* X to min( norm( A * X - B ) )
* using the rank-revealing orthogonal
* factorization.
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
* Initialize vector IWORK.
*
DO 70 J = 1, N
IWORK( J ) = 0
70 CONTINUE
*
SRNAMT = 'ZGELSY'
CALL ZGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
$ RCOND, CRANK, WORK, LWLSY, RWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSY', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
*
* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 7 ) = ZQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK, RWORK )
*
* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 8 ) )
*
* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 10 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test ZGELSS
*
* ZGELSS: Compute the minimum-norm solution
* X to min( norm( A * X - B ) )
* using the SVD.
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
SRNAMT = 'ZGELSS'
CALL ZGELSS( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, RWORK,
$ INFO )
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSS', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 11 ) = ZERO
END IF
*
* Test 12: Compute error in solution
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 12 ) )
*
* Test 13: Check norm of r'*A
*
RESULT( 13 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 13 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 14: Check if x is in the rowspace of A
*
RESULT( 14 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 14 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test ZGELSD
*
* ZGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
CALL XLAENV( 9, 25 )
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'ZGELSD'
CALL ZGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, RWORK,
$ IWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 15 ) = ZERO
END IF
*
* Test 16: Compute error in solution
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 16 ) )
*
* Test 17: Check norm of r'*A
*
RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 17 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 18: Check if x is in the rowspace of A
*
RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 18 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 80 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
$ ITYPE, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
80 CONTINUE
NRUN = NRUN + 12
*
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
$ ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
$ ', type', I2, ', test(', I2, ')=', G12.5 )
9997 FORMAT( ' TRANS=''', A1,' M=', I5, ', N=', I5, ', NRHS=', I4,
$ ', MB=', I4,', NB=', I4,', type', I2,
$ ', test(', I2, ')=', G12.5 )
*
DEALLOCATE( WORK )
DEALLOCATE( IWORK )
DEALLOCATE( RWORK )
RETURN
*
* End of ZDRVLS
*
END