Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

615 lines
21 KiB

2 years ago
*> \brief \b ZERRHEX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZERRHE( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZERRHE tests the error exits for the COMPLEX*16 routines
*> for Hermitian indefinite matrices.
*>
*> Note that this file is used only when the XBLAS are available,
*> otherwise zerrhe.f defines this subroutine.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZERRHE( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER EQ
CHARACTER*2 C2
INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS
DOUBLE PRECISION ANRM, RCOND, BERR
* ..
* .. Local Arrays ..
INTEGER IP( NMAX )
DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX ),
$ S( NMAX ), ERR_BNDS_N( NMAX, 3 ),
$ ERR_BNDS_C( NMAX, 3 ), PARAMS( 1 )
COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ E( NMAX ), W( 2*NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, ZHECON, ZHECON_3, ZHECON_ROOK,
$ ZHERFS, ZHETF2, ZHETF2_RK, ZHETF2_ROOK, ZHETRF,
$ ZHETRF_RK, ZHETRF_ROOK, ZHETRI, ZHETRI_3,
$ ZHETRI_3X, ZHETRI_ROOK, ZHETRI2, ZHETRI2X,
$ ZHETRS, ZHETRS_3, ZHETRS_ROOK, ZHPCON,
$ ZHPRFS, ZHPTRF, ZHPTRI, ZHPTRS, ZHERFSX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
$ -1.D0 / DBLE( I+J ) )
AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
$ -1.D0 / DBLE( I+J ) )
10 CONTINUE
B( J ) = 0.D0
E( J ) = 0.D0
R1( J ) = 0.D0
R2( J ) = 0.D0
W( J ) = 0.D0
X( J ) = 0.D0
S( J ) = 0.D0
IP( J ) = J
20 CONTINUE
ANRM = 1.0D0
OK = .TRUE.
*
* Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method.
*
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
*
* ZHETRF
*
SRNAMT = 'ZHETRF'
INFOT = 1
CALL ZHETRF( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRF( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRF( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHETRF( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHETRF( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK )
*
* ZHETF2
*
SRNAMT = 'ZHETF2'
INFOT = 1
CALL ZHETF2( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETF2( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETF2( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK )
*
* ZHETRI
*
SRNAMT = 'ZHETRI'
INFOT = 1
CALL ZHETRI( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRI( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK )
*
* ZHETRI2
*
SRNAMT = 'ZHETRI2'
INFOT = 1
CALL ZHETRI2( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRI2( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRI2( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
*
* ZHETRI2X
*
SRNAMT = 'ZHETRI2X'
INFOT = 1
CALL ZHETRI2X( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI2X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRI2X( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI2X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRI2X( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI2X', INFOT, NOUT, LERR, OK )
*
* ZHETRS
*
SRNAMT = 'ZHETRS'
INFOT = 1
CALL ZHETRS( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRS( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHETRS( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHETRS( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHETRS( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
*
* ZHERFS
*
SRNAMT = 'ZHERFS'
INFOT = 1
CALL ZHERFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHERFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, R, INFO )
CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHERFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, R, INFO )
CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHERFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHERFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
*
* ZHERFSX
*
N_ERR_BNDS = 3
NPARAMS = 0
SRNAMT = 'ZHERFSX'
INFOT = 1
CALL ZHERFSX( '/', EQ, 0, 0, A, 1, AF, 1, IP, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'ZHERFSX', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHERFSX( 'U', EQ, -1, 0, A, 1, AF, 1, IP, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'ZHERFSX', INFOT, NOUT, LERR, OK )
EQ = 'N'
INFOT = 3
CALL ZHERFSX( 'U', EQ, -1, 0, A, 1, AF, 1, IP, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'ZHERFSX', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHERFSX( 'U', EQ, 0, -1, A, 1, AF, 1, IP, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'ZHERFSX', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZHERFSX( 'U', EQ, 2, 1, A, 1, AF, 2, IP, S, B, 2, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'ZHERFSX', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHERFSX( 'U', EQ, 2, 1, A, 2, AF, 1, IP, S, B, 2, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'ZHERFSX', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZHERFSX( 'U', EQ, 2, 1, A, 2, AF, 2, IP, S, B, 1, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'ZHERFSX', INFOT, NOUT, LERR, OK )
INFOT = 14
CALL ZHERFSX( 'U', EQ, 2, 1, A, 2, AF, 2, IP, S, B, 2, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'ZHERFSX', INFOT, NOUT, LERR, OK )
*
* ZHECON
*
SRNAMT = 'ZHECON'
INFOT = 1
CALL ZHECON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHECON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHECON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZHECON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'HR' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with rook
* (bounded Bunch-Kaufman) diagonal pivoting method.
*
* ZHETRF_ROOK
*
SRNAMT = 'ZHETRF_ROOK'
INFOT = 1
CALL ZHETRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHETRF_ROOK( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHETRF_ROOK( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK )
*
* ZHETF2_ROOK
*
SRNAMT = 'ZHETF2_ROOK'
INFOT = 1
CALL ZHETF2_ROOK( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETF2_ROOK( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETF2_ROOK( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK )
*
* ZHETRI_ROOK
*
SRNAMT = 'ZHETRI_ROOK'
INFOT = 1
CALL ZHETRI_ROOK( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRI_ROOK( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRI_ROOK( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK )
*
* ZHETRS_ROOK
*
SRNAMT = 'ZHETRS_ROOK'
INFOT = 1
CALL ZHETRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHETRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHETRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHETRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
*
* ZHECON_ROOK
*
SRNAMT = 'ZHECON_ROOK'
INFOT = 1
CALL ZHECON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHECON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHECON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZHECON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'HK' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with rook
* (bounded Bunch-Kaufman) pivoting with the new storage
* format for factors L ( or U) and D.
*
* L (or U) is stored in A, diagonal of D is stored on the
* diagonal of A, subdiagonal of D is stored in a separate array E.
*
* ZHETRF_RK
*
SRNAMT = 'ZHETRF_RK'
INFOT = 1
CALL ZHETRF_RK( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRF_RK( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRF_RK( 'U', 2, A, 1, E, IP, W, 4, INFO )
CALL CHKXER( 'ZHETRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHETRF_RK( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'ZHETRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHETRF_RK( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'ZHETRF_RK', INFOT, NOUT, LERR, OK )
*
* ZHETF2_RK
*
SRNAMT = 'ZHETF2_RK'
INFOT = 1
CALL ZHETF2_RK( '/', 0, A, 1, E, IP, INFO )
CALL CHKXER( 'ZHETF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETF2_RK( 'U', -1, A, 1, E, IP, INFO )
CALL CHKXER( 'ZHETF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETF2_RK( 'U', 2, A, 1, E, IP, INFO )
CALL CHKXER( 'ZHETF2_RK', INFOT, NOUT, LERR, OK )
*
* ZHETRI_3
*
SRNAMT = 'ZHETRI_3'
INFOT = 1
CALL ZHETRI_3( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRI_3( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRI_3( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHETRI_3( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'ZHETRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHETRI_3( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'ZHETRI_3', INFOT, NOUT, LERR, OK )
*
* ZHETRI_3X
*
SRNAMT = 'ZHETRI_3X'
INFOT = 1
CALL ZHETRI_3X( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRI_3X( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHETRI_3X( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZHETRI_3X', INFOT, NOUT, LERR, OK )
*
* ZHETRS_3
*
SRNAMT = 'ZHETRS_3'
INFOT = 1
CALL ZHETRS_3( '/', 0, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHETRS_3( 'U', -1, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS_3', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHETRS_3( 'U', 0, -1, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS_3', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHETRS_3( 'U', 2, 1, A, 1, E, IP, B, 2, INFO )
CALL CHKXER( 'ZHETRS_3', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZHETRS_3( 'U', 2, 1, A, 2, E, IP, B, 1, INFO )
CALL CHKXER( 'ZHETRS_3', INFOT, NOUT, LERR, OK )
*
* ZHECON_3
*
SRNAMT = 'ZHECON_3'
INFOT = 1
CALL ZHECON_3( '/', 0, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHECON_3( 'U', -1, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZHECON_3( 'U', 2, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHECON_3', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHECON_3( 'U', 1, A, 1, E, IP, -1.0D0, RCOND, W, INFO)
CALL CHKXER( 'ZHECON_3', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a Hermitian indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method.
*
* ZHPTRF
*
SRNAMT = 'ZHPTRF'
INFOT = 1
CALL ZHPTRF( '/', 0, A, IP, INFO )
CALL CHKXER( 'ZHPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHPTRF( 'U', -1, A, IP, INFO )
CALL CHKXER( 'ZHPTRF', INFOT, NOUT, LERR, OK )
*
* ZHPTRI
*
SRNAMT = 'ZHPTRI'
INFOT = 1
CALL ZHPTRI( '/', 0, A, IP, W, INFO )
CALL CHKXER( 'ZHPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHPTRI( 'U', -1, A, IP, W, INFO )
CALL CHKXER( 'ZHPTRI', INFOT, NOUT, LERR, OK )
*
* ZHPTRS
*
SRNAMT = 'ZHPTRS'
INFOT = 1
CALL ZHPTRS( '/', 0, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHPTRS( 'U', -1, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHPTRS( 'U', 0, -1, A, IP, B, 1, INFO )
CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZHPTRS( 'U', 2, 1, A, IP, B, 1, INFO )
CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK )
*
* ZHPRFS
*
SRNAMT = 'ZHPRFS'
INFOT = 1
CALL ZHPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZHPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZHPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZHPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
*
* ZHPCON
*
SRNAMT = 'ZHPCON'
INFOT = 1
CALL ZHPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZHPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZHPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of ZERRHEX
*
END