You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
245 lines
6.8 KiB
245 lines
6.8 KiB
2 years ago
|
*> \brief \b ZRQT02
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
|
||
|
* RWORK, RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER K, LDA, LWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION RESULT( * ), RWORK( * )
|
||
|
* COMPLEX*16 A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
|
||
|
* $ R( LDA, * ), TAU( * ), WORK( LWORK )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with
|
||
|
*> orthonormal rows that is defined as the product of k elementary
|
||
|
*> reflectors.
|
||
|
*>
|
||
|
*> Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates
|
||
|
*> the orthogonal matrix Q defined by the factorization of the last k
|
||
|
*> rows of A; it compares R(m-k+1:m,n-m+1:n) with
|
||
|
*> A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
|
||
|
*> orthonormal.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix Q to be generated. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix Q to be generated.
|
||
|
*> N >= M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> The number of elementary reflectors whose product defines the
|
||
|
*> matrix Q. M >= K >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> The m-by-n matrix A which was factorized by ZRQT01.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AF
|
||
|
*> \verbatim
|
||
|
*> AF is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> Details of the RQ factorization of A, as returned by ZGERQF.
|
||
|
*> See ZGERQF for further details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Q
|
||
|
*> \verbatim
|
||
|
*> Q is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] R
|
||
|
*> \verbatim
|
||
|
*> R is COMPLEX*16 array, dimension (LDA,M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the arrays A, AF, Q and L. LDA >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is COMPLEX*16 array, dimension (M)
|
||
|
*> The scalar factors of the elementary reflectors corresponding
|
||
|
*> to the RQ factorization in AF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (LWORK)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is DOUBLE PRECISION array, dimension (2)
|
||
|
*> The test ratios:
|
||
|
*> RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
|
||
|
*> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
|
||
|
$ RWORK, RESULT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER K, LDA, LWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION RESULT( * ), RWORK( * )
|
||
|
COMPLEX*16 A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
|
||
|
$ R( LDA, * ), TAU( * ), WORK( LWORK )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
COMPLEX*16 ROGUE
|
||
|
PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER INFO
|
||
|
DOUBLE PRECISION ANORM, EPS, RESID
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
|
||
|
EXTERNAL DLAMCH, ZLANGE, ZLANSY
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZGEMM, ZHERK, ZLACPY, ZLASET, ZUNGRQ
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE, DCMPLX, MAX
|
||
|
* ..
|
||
|
* .. Scalars in Common ..
|
||
|
CHARACTER*32 SRNAMT
|
||
|
* ..
|
||
|
* .. Common blocks ..
|
||
|
COMMON / SRNAMC / SRNAMT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
|
||
|
RESULT( 1 ) = ZERO
|
||
|
RESULT( 2 ) = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
*
|
||
|
* Copy the last k rows of the factorization to the array Q
|
||
|
*
|
||
|
CALL ZLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
|
||
|
IF( K.LT.N )
|
||
|
$ CALL ZLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
|
||
|
$ Q( M-K+1, 1 ), LDA )
|
||
|
IF( K.GT.1 )
|
||
|
$ CALL ZLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
|
||
|
$ Q( M-K+2, N-K+1 ), LDA )
|
||
|
*
|
||
|
* Generate the last n rows of the matrix Q
|
||
|
*
|
||
|
SRNAMT = 'ZUNGRQ'
|
||
|
CALL ZUNGRQ( M, N, K, Q, LDA, TAU( M-K+1 ), WORK, LWORK, INFO )
|
||
|
*
|
||
|
* Copy R(m-k+1:m,n-m+1:n)
|
||
|
*
|
||
|
CALL ZLASET( 'Full', K, M, DCMPLX( ZERO ), DCMPLX( ZERO ),
|
||
|
$ R( M-K+1, N-M+1 ), LDA )
|
||
|
CALL ZLACPY( 'Upper', K, K, AF( M-K+1, N-K+1 ), LDA,
|
||
|
$ R( M-K+1, N-K+1 ), LDA )
|
||
|
*
|
||
|
* Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
|
||
|
*
|
||
|
CALL ZGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
|
||
|
$ DCMPLX( -ONE ), A( M-K+1, 1 ), LDA, Q, LDA,
|
||
|
$ DCMPLX( ONE ), R( M-K+1, N-M+1 ), LDA )
|
||
|
*
|
||
|
* Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
|
||
|
*
|
||
|
ANORM = ZLANGE( '1', K, N, A( M-K+1, 1 ), LDA, RWORK )
|
||
|
RESID = ZLANGE( '1', K, M, R( M-K+1, N-M+1 ), LDA, RWORK )
|
||
|
IF( ANORM.GT.ZERO ) THEN
|
||
|
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
|
||
|
ELSE
|
||
|
RESULT( 1 ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* Compute I - Q*Q'
|
||
|
*
|
||
|
CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA )
|
||
|
CALL ZHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, R,
|
||
|
$ LDA )
|
||
|
*
|
||
|
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
|
||
|
*
|
||
|
RESID = ZLANSY( '1', 'Upper', M, R, LDA, RWORK )
|
||
|
*
|
||
|
RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZRQT02
|
||
|
*
|
||
|
END
|