Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

382 lines
10 KiB

2 years ago
*> \brief \b ZUNHR_COL02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZUNHR_COL02( M, N, MB1, NB1, NB2, RESULT )
*
* .. Scalar Arguments ..
* INTEGER M, N, MB1, NB1, NB2
* .. Return values ..
* DOUBLE PRECISION RESULT(6)
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZUNHR_COL02 tests ZUNGTSQR_ROW and ZUNHR_COL inside ZGETSQRHRT
*> (which calls ZLATSQR, ZUNGTSQR_ROW and ZUNHR_COL) using ZGEMQRT.
*> Therefore, ZLATSQR (part of ZGEQR), ZGEMQRT (part of ZGEMQR)
*> have to be tested before this test.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> Number of rows in test matrix.
*> \endverbatim
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Number of columns in test matrix.
*> \endverbatim
*> \param[in] MB1
*> \verbatim
*> MB1 is INTEGER
*> Number of row in row block in an input test matrix.
*> \endverbatim
*>
*> \param[in] NB1
*> \verbatim
*> NB1 is INTEGER
*> Number of columns in column block an input test matrix.
*> \endverbatim
*>
*> \param[in] NB2
*> \verbatim
*> NB2 is INTEGER
*> Number of columns in column block in an output test matrix.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (6)
*> Results of each of the six tests below.
*>
*> A is a m-by-n test input matrix to be factored.
*> so that A = Q_gr * ( R )
*> ( 0 ),
*>
*> Q_qr is an implicit m-by-m unitary Q matrix, the result
*> of factorization in blocked WY-representation,
*> stored in ZGEQRT output format.
*>
*> R is a n-by-n upper-triangular matrix,
*>
*> 0 is a (m-n)-by-n zero matrix,
*>
*> Q is an explicit m-by-m unitary matrix Q = Q_gr * I
*>
*> C is an m-by-n random matrix,
*>
*> D is an n-by-m random matrix.
*>
*> The six tests are:
*>
*> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| )
*> is equivalent to test for | A - Q * R | / (eps * m * |A|),
*>
*> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ),
*>
*> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|),
*>
*> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|)
*>
*> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|)
*>
*> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|),
*>
*> where:
*> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are
*> computed using ZGEMQRT,
*>
*> Q * C, (Q**H) * C, D * Q, D * (Q**H) are
*> computed using ZGEMM.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZUNHR_COL02( M, N, MB1, NB1, NB2, RESULT )
IMPLICIT NONE
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER M, N, MB1, NB1, NB2
* .. Return values ..
DOUBLE PRECISION RESULT(6)
*
* =====================================================================
*
* ..
* .. Local allocatable arrays
COMPLEX*16 , ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:),
$ WORK( : ), T1(:,:), T2(:,:), DIAG(:),
$ C(:,:), CF(:,:), D(:,:), DF(:,:)
DOUBLE PRECISION, ALLOCATABLE :: RWORK(:)
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
COMPLEX*16 CONE, CZERO
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
$ CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL TESTZEROS
INTEGER INFO, J, K, L, LWORK, NB2_UB, NRB
DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 )
COMPLEX*16 WORKQUERY( 1 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
EXTERNAL DLAMCH, ZLANGE, ZLANSY
* ..
* .. External Subroutines ..
EXTERNAL ZLACPY, ZLARNV, ZLASET, ZGETSQRHRT,
$ ZSCAL, ZGEMM, ZGEMQRT, ZHERK
* ..
* .. Intrinsic Functions ..
INTRINSIC CEILING, DBLE, MAX, MIN
* ..
* .. Scalars in Common ..
CHARACTER(LEN=32) SRNAMT
* ..
* .. Common blocks ..
COMMON / SRMNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEED / 1988, 1989, 1990, 1991 /
*
* TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
*
TESTZEROS = .FALSE.
*
EPS = DLAMCH( 'Epsilon' )
K = MIN( M, N )
L = MAX( M, N, 1)
*
* Dynamically allocate local arrays
*
ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
$ C(M,N), CF(M,N),
$ D(N,M), DF(N,M) )
*
* Put random numbers into A and copy to AF
*
DO J = 1, N
CALL ZLARNV( 2, ISEED, M, A( 1, J ) )
END DO
IF( TESTZEROS ) THEN
IF( M.GE.4 ) THEN
DO J = 1, N
CALL ZLARNV( 2, ISEED, M/2, A( M/4, J ) )
END DO
END IF
END IF
CALL ZLACPY( 'Full', M, N, A, M, AF, M )
*
* Number of row blocks in ZLATSQR
*
NRB = MAX( 1, CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) )
*
ALLOCATE ( T1( NB1, N * NRB ) )
ALLOCATE ( T2( NB2, N ) )
ALLOCATE ( DIAG( N ) )
*
* Begin determine LWORK for the array WORK and allocate memory.
*
* ZGEMQRT requires NB2 to be bounded by N.
*
NB2_UB = MIN( NB2, N)
*
*
CALL ZGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2,
$ WORKQUERY, -1, INFO )
*
LWORK = INT( WORKQUERY( 1 ) )
*
* In ZGEMQRT, WORK is N*NB2_UB if SIDE = 'L',
* or M*NB2_UB if SIDE = 'R'.
*
LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M )
*
ALLOCATE ( WORK( LWORK ) )
*
* End allocate memory for WORK.
*
*
* Begin Householder reconstruction routines
*
* Factor the matrix A in the array AF.
*
SRNAMT = 'ZGETSQRHRT'
CALL ZGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2,
$ WORK, LWORK, INFO )
*
* End Householder reconstruction routines.
*
*
* Generate the m-by-m matrix Q
*
CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, M )
*
SRNAMT = 'ZGEMQRT'
CALL ZGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M,
$ WORK, INFO )
*
* Copy R
*
CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, M )
*
CALL ZLACPY( 'Upper', M, N, AF, M, R, M )
*
* TEST 1
* Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1)
*
CALL ZGEMM( 'C', 'N', M, N, M, -CONE, Q, M, A, M, CONE, R, M )
*
ANORM = ZLANGE( '1', M, N, A, M, RWORK )
RESID = ZLANGE( '1', M, N, R, M, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM )
ELSE
RESULT( 1 ) = ZERO
END IF
*
* TEST 2
* Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2)
*
CALL ZLASET( 'Full', M, M, CZERO, CONE, R, M )
CALL ZHERK( 'U', 'C', M, M, REAL(-CONE), Q, M, REAL(CONE), R, M )
RESID = ZLANSY( '1', 'Upper', M, R, M, RWORK )
RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) )
*
* Generate random m-by-n matrix C
*
DO J = 1, N
CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
END DO
CNORM = ZLANGE( '1', M, N, C, M, RWORK )
CALL ZLACPY( 'Full', M, N, C, M, CF, M )
*
* Apply Q to C as Q*C = CF
*
SRNAMT = 'ZGEMQRT'
CALL ZGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
$ WORK, INFO )
*
* TEST 3
* Compute |CF - Q*C| / ( eps * m * |C| )
*
CALL ZGEMM( 'N', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M )
RESID = ZLANGE( '1', M, N, CF, M, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
ELSE
RESULT( 3 ) = ZERO
END IF
*
* Copy C into CF again
*
CALL ZLACPY( 'Full', M, N, C, M, CF, M )
*
* Apply Q to C as (Q**T)*C = CF
*
SRNAMT = 'ZGEMQRT'
CALL ZGEMQRT( 'L', 'C', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
$ WORK, INFO )
*
* TEST 4
* Compute |CF - (Q**T)*C| / ( eps * m * |C|)
*
CALL ZGEMM( 'C', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M )
RESID = ZLANGE( '1', M, N, CF, M, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
ELSE
RESULT( 4 ) = ZERO
END IF
*
* Generate random n-by-m matrix D and a copy DF
*
DO J = 1, M
CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
END DO
DNORM = ZLANGE( '1', N, M, D, N, RWORK )
CALL ZLACPY( 'Full', N, M, D, N, DF, N )
*
* Apply Q to D as D*Q = DF
*
SRNAMT = 'ZGEMQRT'
CALL ZGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
$ WORK, INFO )
*
* TEST 5
* Compute |DF - D*Q| / ( eps * m * |D| )
*
CALL ZGEMM( 'N', 'N', N, M, M, -CONE, D, N, Q, M, CONE, DF, N )
RESID = ZLANGE( '1', N, M, DF, N, RWORK )
IF( DNORM.GT.ZERO ) THEN
RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
ELSE
RESULT( 5 ) = ZERO
END IF
*
* Copy D into DF again
*
CALL ZLACPY( 'Full', N, M, D, N, DF, N )
*
* Apply Q to D as D*QT = DF
*
SRNAMT = 'ZGEMQRT'
CALL ZGEMQRT( 'R', 'C', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
$ WORK, INFO )
*
* TEST 6
* Compute |DF - D*(Q**T)| / ( eps * m * |D| )
*
CALL ZGEMM( 'N', 'C', N, M, M, -CONE, D, N, Q, M, CONE, DF, N )
RESID = ZLANGE( '1', N, M, DF, N, RWORK )
IF( DNORM.GT.ZERO ) THEN
RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
ELSE
RESULT( 6 ) = ZERO
END IF
*
* Deallocate all arrays
*
DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG,
$ C, D, CF, DF )
*
RETURN
*
* End of ZUNHR_COL02
*
END