You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
369 lines
11 KiB
369 lines
11 KiB
2 years ago
|
*> \brief \b CLAGGE
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, KL, KU, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER ISEED( 4 )
|
||
|
* REAL D( * )
|
||
|
* COMPLEX A( LDA, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLAGGE generates a complex general m by n matrix A, by pre- and post-
|
||
|
*> multiplying a real diagonal matrix D with random unitary matrices:
|
||
|
*> A = U*D*V. The lower and upper bandwidths may then be reduced to
|
||
|
*> kl and ku by additional unitary transformations.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KL
|
||
|
*> \verbatim
|
||
|
*> KL is INTEGER
|
||
|
*> The number of nonzero subdiagonals within the band of A.
|
||
|
*> 0 <= KL <= M-1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KU
|
||
|
*> \verbatim
|
||
|
*> KU is INTEGER
|
||
|
*> The number of nonzero superdiagonals within the band of A.
|
||
|
*> 0 <= KU <= N-1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (min(M,N))
|
||
|
*> The diagonal elements of the diagonal matrix D.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> The generated m by n matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= M.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension (4)
|
||
|
*> On entry, the seed of the random number generator; the array
|
||
|
*> elements must be between 0 and 4095, and ISEED(4) must be
|
||
|
*> odd.
|
||
|
*> On exit, the seed is updated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (M+N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_matgen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, KL, KU, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
REAL D( * )
|
||
|
COMPLEX A( LDA, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX ZERO, ONE
|
||
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
|
||
|
$ ONE = ( 1.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J
|
||
|
REAL WN
|
||
|
COMPLEX TAU, WA, WB
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEMV, CGERC, CLACGV, CLARNV, CSCAL, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN, REAL
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SCNRM2
|
||
|
EXTERNAL SCNRM2
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -7
|
||
|
END IF
|
||
|
IF( INFO.LT.0 ) THEN
|
||
|
CALL XERBLA( 'CLAGGE', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* initialize A to diagonal matrix
|
||
|
*
|
||
|
DO 20 J = 1, N
|
||
|
DO 10 I = 1, M
|
||
|
A( I, J ) = ZERO
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
DO 30 I = 1, MIN( M, N )
|
||
|
A( I, I ) = D( I )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Quick exit if the user wants a diagonal matrix
|
||
|
*
|
||
|
IF(( KL .EQ. 0 ).AND.( KU .EQ. 0)) RETURN
|
||
|
*
|
||
|
* pre- and post-multiply A by random unitary matrices
|
||
|
*
|
||
|
DO 40 I = MIN( M, N ), 1, -1
|
||
|
IF( I.LT.M ) THEN
|
||
|
*
|
||
|
* generate random reflection
|
||
|
*
|
||
|
CALL CLARNV( 3, ISEED, M-I+1, WORK )
|
||
|
WN = SCNRM2( M-I+1, WORK, 1 )
|
||
|
WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
|
||
|
IF( WN.EQ.ZERO ) THEN
|
||
|
TAU = ZERO
|
||
|
ELSE
|
||
|
WB = WORK( 1 ) + WA
|
||
|
CALL CSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
|
||
|
WORK( 1 ) = ONE
|
||
|
TAU = REAL( WB / WA )
|
||
|
END IF
|
||
|
*
|
||
|
* multiply A(i:m,i:n) by random reflection from the left
|
||
|
*
|
||
|
CALL CGEMV( 'Conjugate transpose', M-I+1, N-I+1, ONE,
|
||
|
$ A( I, I ), LDA, WORK, 1, ZERO, WORK( M+1 ), 1 )
|
||
|
CALL CGERC( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1,
|
||
|
$ A( I, I ), LDA )
|
||
|
END IF
|
||
|
IF( I.LT.N ) THEN
|
||
|
*
|
||
|
* generate random reflection
|
||
|
*
|
||
|
CALL CLARNV( 3, ISEED, N-I+1, WORK )
|
||
|
WN = SCNRM2( N-I+1, WORK, 1 )
|
||
|
WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
|
||
|
IF( WN.EQ.ZERO ) THEN
|
||
|
TAU = ZERO
|
||
|
ELSE
|
||
|
WB = WORK( 1 ) + WA
|
||
|
CALL CSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
|
||
|
WORK( 1 ) = ONE
|
||
|
TAU = REAL( WB / WA )
|
||
|
END IF
|
||
|
*
|
||
|
* multiply A(i:m,i:n) by random reflection from the right
|
||
|
*
|
||
|
CALL CGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
|
||
|
$ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
|
||
|
CALL CGERC( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1,
|
||
|
$ A( I, I ), LDA )
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Reduce number of subdiagonals to KL and number of superdiagonals
|
||
|
* to KU
|
||
|
*
|
||
|
DO 70 I = 1, MAX( M-1-KL, N-1-KU )
|
||
|
IF( KL.LE.KU ) THEN
|
||
|
*
|
||
|
* annihilate subdiagonal elements first (necessary if KL = 0)
|
||
|
*
|
||
|
IF( I.LE.MIN( M-1-KL, N ) ) THEN
|
||
|
*
|
||
|
* generate reflection to annihilate A(kl+i+1:m,i)
|
||
|
*
|
||
|
WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
|
||
|
WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
|
||
|
IF( WN.EQ.ZERO ) THEN
|
||
|
TAU = ZERO
|
||
|
ELSE
|
||
|
WB = A( KL+I, I ) + WA
|
||
|
CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
|
||
|
A( KL+I, I ) = ONE
|
||
|
TAU = REAL( WB / WA )
|
||
|
END IF
|
||
|
*
|
||
|
* apply reflection to A(kl+i:m,i+1:n) from the left
|
||
|
*
|
||
|
CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
|
||
|
$ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
|
||
|
$ WORK, 1 )
|
||
|
CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
|
||
|
$ 1, A( KL+I, I+1 ), LDA )
|
||
|
A( KL+I, I ) = -WA
|
||
|
END IF
|
||
|
*
|
||
|
IF( I.LE.MIN( N-1-KU, M ) ) THEN
|
||
|
*
|
||
|
* generate reflection to annihilate A(i,ku+i+1:n)
|
||
|
*
|
||
|
WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
|
||
|
WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
|
||
|
IF( WN.EQ.ZERO ) THEN
|
||
|
TAU = ZERO
|
||
|
ELSE
|
||
|
WB = A( I, KU+I ) + WA
|
||
|
CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
|
||
|
A( I, KU+I ) = ONE
|
||
|
TAU = REAL( WB / WA )
|
||
|
END IF
|
||
|
*
|
||
|
* apply reflection to A(i+1:m,ku+i:n) from the right
|
||
|
*
|
||
|
CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
|
||
|
CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
|
||
|
$ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
|
||
|
$ WORK, 1 )
|
||
|
CALL CGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
|
||
|
$ LDA, A( I+1, KU+I ), LDA )
|
||
|
A( I, KU+I ) = -WA
|
||
|
END IF
|
||
|
ELSE
|
||
|
*
|
||
|
* annihilate superdiagonal elements first (necessary if
|
||
|
* KU = 0)
|
||
|
*
|
||
|
IF( I.LE.MIN( N-1-KU, M ) ) THEN
|
||
|
*
|
||
|
* generate reflection to annihilate A(i,ku+i+1:n)
|
||
|
*
|
||
|
WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
|
||
|
WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
|
||
|
IF( WN.EQ.ZERO ) THEN
|
||
|
TAU = ZERO
|
||
|
ELSE
|
||
|
WB = A( I, KU+I ) + WA
|
||
|
CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
|
||
|
A( I, KU+I ) = ONE
|
||
|
TAU = REAL( WB / WA )
|
||
|
END IF
|
||
|
*
|
||
|
* apply reflection to A(i+1:m,ku+i:n) from the right
|
||
|
*
|
||
|
CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
|
||
|
CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
|
||
|
$ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
|
||
|
$ WORK, 1 )
|
||
|
CALL CGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
|
||
|
$ LDA, A( I+1, KU+I ), LDA )
|
||
|
A( I, KU+I ) = -WA
|
||
|
END IF
|
||
|
*
|
||
|
IF( I.LE.MIN( M-1-KL, N ) ) THEN
|
||
|
*
|
||
|
* generate reflection to annihilate A(kl+i+1:m,i)
|
||
|
*
|
||
|
WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
|
||
|
WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
|
||
|
IF( WN.EQ.ZERO ) THEN
|
||
|
TAU = ZERO
|
||
|
ELSE
|
||
|
WB = A( KL+I, I ) + WA
|
||
|
CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
|
||
|
A( KL+I, I ) = ONE
|
||
|
TAU = REAL( WB / WA )
|
||
|
END IF
|
||
|
*
|
||
|
* apply reflection to A(kl+i:m,i+1:n) from the left
|
||
|
*
|
||
|
CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
|
||
|
$ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
|
||
|
$ WORK, 1 )
|
||
|
CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
|
||
|
$ 1, A( KL+I, I+1 ), LDA )
|
||
|
A( KL+I, I ) = -WA
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF (I .LE. N) THEN
|
||
|
DO 50 J = KL + I + 1, M
|
||
|
A( J, I ) = ZERO
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
IF (I .LE. M) THEN
|
||
|
DO 60 J = KU + I + 1, N
|
||
|
A( I, J ) = ZERO
|
||
|
60 CONTINUE
|
||
|
END IF
|
||
|
70 CONTINUE
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLAGGE
|
||
|
*
|
||
|
END
|