You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
4.4 KiB
172 lines
4.4 KiB
2 years ago
|
*> \brief \b DLARGE
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLARGE( N, A, LDA, ISEED, WORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER ISEED( 4 )
|
||
|
* DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLARGE pre- and post-multiplies a real general n by n matrix A
|
||
|
*> with a random orthogonal matrix: A = U*D*U'.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
*> On entry, the original n by n matrix A.
|
||
|
*> On exit, A is overwritten by U*A*U' for some random
|
||
|
*> orthogonal matrix U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension (4)
|
||
|
*> On entry, the seed of the random number generator; the array
|
||
|
*> elements must be between 0 and 4095, and ISEED(4) must be
|
||
|
*> odd.
|
||
|
*> On exit, the seed is updated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_matgen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLARGE( N, A, LDA, ISEED, WORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I
|
||
|
DOUBLE PRECISION TAU, WA, WB, WN
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DGEMV, DGER, DLARNV, DSCAL, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, SIGN
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DNRM2
|
||
|
EXTERNAL DNRM2
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( N.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -3
|
||
|
END IF
|
||
|
IF( INFO.LT.0 ) THEN
|
||
|
CALL XERBLA( 'DLARGE', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* pre- and post-multiply A by random orthogonal matrix
|
||
|
*
|
||
|
DO 10 I = N, 1, -1
|
||
|
*
|
||
|
* generate random reflection
|
||
|
*
|
||
|
CALL DLARNV( 3, ISEED, N-I+1, WORK )
|
||
|
WN = DNRM2( N-I+1, WORK, 1 )
|
||
|
WA = SIGN( WN, WORK( 1 ) )
|
||
|
IF( WN.EQ.ZERO ) THEN
|
||
|
TAU = ZERO
|
||
|
ELSE
|
||
|
WB = WORK( 1 ) + WA
|
||
|
CALL DSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
|
||
|
WORK( 1 ) = ONE
|
||
|
TAU = WB / WA
|
||
|
END IF
|
||
|
*
|
||
|
* multiply A(i:n,1:n) by random reflection from the left
|
||
|
*
|
||
|
CALL DGEMV( 'Transpose', N-I+1, N, ONE, A( I, 1 ), LDA, WORK,
|
||
|
$ 1, ZERO, WORK( N+1 ), 1 )
|
||
|
CALL DGER( N-I+1, N, -TAU, WORK, 1, WORK( N+1 ), 1, A( I, 1 ),
|
||
|
$ LDA )
|
||
|
*
|
||
|
* multiply A(1:n,i:n) by random reflection from the right
|
||
|
*
|
||
|
CALL DGEMV( 'No transpose', N, N-I+1, ONE, A( 1, I ), LDA,
|
||
|
$ WORK, 1, ZERO, WORK( N+1 ), 1 )
|
||
|
CALL DGER( N, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, A( 1, I ),
|
||
|
$ LDA )
|
||
|
10 CONTINUE
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLARGE
|
||
|
*
|
||
|
END
|