You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
347 lines
10 KiB
347 lines
10 KiB
2 years ago
|
*> \brief \b ZLAROR
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER INIT, SIDE
|
||
|
* INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER ISEED( 4 )
|
||
|
* COMPLEX*16 A( LDA, * ), X( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZLAROR pre- or post-multiplies an M by N matrix A by a random
|
||
|
*> unitary matrix U, overwriting A. A may optionally be
|
||
|
*> initialized to the identity matrix before multiplying by U.
|
||
|
*> U is generated using the method of G.W. Stewart
|
||
|
*> ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ).
|
||
|
*> (BLAS-2 version)
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] SIDE
|
||
|
*> \verbatim
|
||
|
*> SIDE is CHARACTER*1
|
||
|
*> SIDE specifies whether A is multiplied on the left or right
|
||
|
*> by U.
|
||
|
*> SIDE = 'L' Multiply A on the left (premultiply) by U
|
||
|
*> SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the left by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U'
|
||
|
*> Not modified.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] INIT
|
||
|
*> \verbatim
|
||
|
*> INIT is CHARACTER*1
|
||
|
*> INIT specifies whether or not A should be initialized to
|
||
|
*> the identity matrix.
|
||
|
*> INIT = 'I' Initialize A to (a section of) the
|
||
|
*> identity matrix before applying U.
|
||
|
*> INIT = 'N' No initialization. Apply U to the
|
||
|
*> input matrix A.
|
||
|
*>
|
||
|
*> INIT = 'I' may be used to generate square (i.e., unitary)
|
||
|
*> or rectangular orthogonal matrices (orthogonality being
|
||
|
*> in the sense of ZDOTC):
|
||
|
*>
|
||
|
*> For square matrices, M=N, and SIDE many be either 'L' or
|
||
|
*> 'R'; the rows will be orthogonal to each other, as will the
|
||
|
*> columns.
|
||
|
*> For rectangular matrices where M < N, SIDE = 'R' will
|
||
|
*> produce a dense matrix whose rows will be orthogonal and
|
||
|
*> whose columns will not, while SIDE = 'L' will produce a
|
||
|
*> matrix whose rows will be orthogonal, and whose first M
|
||
|
*> columns will be orthogonal, the remaining columns being
|
||
|
*> zero.
|
||
|
*> For matrices where M > N, just use the previous
|
||
|
*> explanation, interchanging 'L' and 'R' and "rows" and
|
||
|
*> "columns".
|
||
|
*>
|
||
|
*> Not modified.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> Number of rows of A. Not modified.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> Number of columns of A. Not modified.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension ( LDA, N )
|
||
|
*> Input and output array. Overwritten by U A ( if SIDE = 'L' )
|
||
|
*> or by A U ( if SIDE = 'R' )
|
||
|
*> or by U A U* ( if SIDE = 'C')
|
||
|
*> or by U A U' ( if SIDE = 'T') on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> Leading dimension of A. Must be at least MAX ( 1, M ).
|
||
|
*> Not modified.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension ( 4 )
|
||
|
*> On entry ISEED specifies the seed of the random number
|
||
|
*> generator. The array elements should be between 0 and 4095;
|
||
|
*> if not they will be reduced mod 4096. Also, ISEED(4) must
|
||
|
*> be odd. The random number generator uses a linear
|
||
|
*> congruential sequence limited to small integers, and so
|
||
|
*> should produce machine independent random numbers. The
|
||
|
*> values of ISEED are changed on exit, and can be used in the
|
||
|
*> next call to ZLAROR to continue the same random number
|
||
|
*> sequence.
|
||
|
*> Modified.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX*16 array, dimension ( 3*MAX( M, N ) )
|
||
|
*> Workspace. Of length:
|
||
|
*> 2*M + N if SIDE = 'L',
|
||
|
*> 2*N + M if SIDE = 'R',
|
||
|
*> 3*N if SIDE = 'C' or 'T'.
|
||
|
*> Modified.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> An error flag. It is set to:
|
||
|
*> 0 if no error.
|
||
|
*> 1 if ZLARND returned a bad random number (installation
|
||
|
*> problem)
|
||
|
*> -1 if SIDE is not L, R, C, or T.
|
||
|
*> -3 if M is negative.
|
||
|
*> -4 if N is negative or if SIDE is C or T and N is not equal
|
||
|
*> to M.
|
||
|
*> -6 if LDA is less than M.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_matgen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER INIT, SIDE
|
||
|
INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
COMPLEX*16 A( LDA, * ), X( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE, TOOSML
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0,
|
||
|
$ TOOSML = 1.0D-20 )
|
||
|
COMPLEX*16 CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
||
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM
|
||
|
DOUBLE PRECISION FACTOR, XABS, XNORM
|
||
|
COMPLEX*16 CSIGN, XNORMS
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DZNRM2
|
||
|
COMPLEX*16 ZLARND
|
||
|
EXTERNAL LSAME, DZNRM2, ZLARND
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZGEMV, ZGERC, ZLACGV, ZLASET, ZSCAL
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DCMPLX, DCONJG
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( N.EQ.0 .OR. M.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
ITYPE = 0
|
||
|
IF( LSAME( SIDE, 'L' ) ) THEN
|
||
|
ITYPE = 1
|
||
|
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
|
||
|
ITYPE = 2
|
||
|
ELSE IF( LSAME( SIDE, 'C' ) ) THEN
|
||
|
ITYPE = 3
|
||
|
ELSE IF( LSAME( SIDE, 'T' ) ) THEN
|
||
|
ITYPE = 4
|
||
|
END IF
|
||
|
*
|
||
|
* Check for argument errors.
|
||
|
*
|
||
|
IF( ITYPE.EQ.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( M.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDA.LT.M ) THEN
|
||
|
INFO = -6
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZLAROR', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( ITYPE.EQ.1 ) THEN
|
||
|
NXFRM = M
|
||
|
ELSE
|
||
|
NXFRM = N
|
||
|
END IF
|
||
|
*
|
||
|
* Initialize A to the identity matrix if desired
|
||
|
*
|
||
|
IF( LSAME( INIT, 'I' ) )
|
||
|
$ CALL ZLASET( 'Full', M, N, CZERO, CONE, A, LDA )
|
||
|
*
|
||
|
* If no rotation possible, still multiply by
|
||
|
* a random complex number from the circle |x| = 1
|
||
|
*
|
||
|
* 2) Compute Rotation by computing Householder
|
||
|
* Transformations H(2), H(3), ..., H(n). Note that the
|
||
|
* order in which they are computed is irrelevant.
|
||
|
*
|
||
|
DO 10 J = 1, NXFRM
|
||
|
X( J ) = CZERO
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
DO 30 IXFRM = 2, NXFRM
|
||
|
KBEG = NXFRM - IXFRM + 1
|
||
|
*
|
||
|
* Generate independent normal( 0, 1 ) random numbers
|
||
|
*
|
||
|
DO 20 J = KBEG, NXFRM
|
||
|
X( J ) = ZLARND( 3, ISEED )
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Generate a Householder transformation from the random vector X
|
||
|
*
|
||
|
XNORM = DZNRM2( IXFRM, X( KBEG ), 1 )
|
||
|
XABS = ABS( X( KBEG ) )
|
||
|
IF( XABS.NE.CZERO ) THEN
|
||
|
CSIGN = X( KBEG ) / XABS
|
||
|
ELSE
|
||
|
CSIGN = CONE
|
||
|
END IF
|
||
|
XNORMS = CSIGN*XNORM
|
||
|
X( NXFRM+KBEG ) = -CSIGN
|
||
|
FACTOR = XNORM*( XNORM+XABS )
|
||
|
IF( ABS( FACTOR ).LT.TOOSML ) THEN
|
||
|
INFO = 1
|
||
|
CALL XERBLA( 'ZLAROR', -INFO )
|
||
|
RETURN
|
||
|
ELSE
|
||
|
FACTOR = ONE / FACTOR
|
||
|
END IF
|
||
|
X( KBEG ) = X( KBEG ) + XNORMS
|
||
|
*
|
||
|
* Apply Householder transformation to A
|
||
|
*
|
||
|
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
|
||
|
*
|
||
|
* Apply H(k) on the left of A
|
||
|
*
|
||
|
CALL ZGEMV( 'C', IXFRM, N, CONE, A( KBEG, 1 ), LDA,
|
||
|
$ X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
|
||
|
CALL ZGERC( IXFRM, N, -DCMPLX( FACTOR ), X( KBEG ), 1,
|
||
|
$ X( 2*NXFRM+1 ), 1, A( KBEG, 1 ), LDA )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
IF( ITYPE.GE.2 .AND. ITYPE.LE.4 ) THEN
|
||
|
*
|
||
|
* Apply H(k)* (or H(k)') on the right of A
|
||
|
*
|
||
|
IF( ITYPE.EQ.4 ) THEN
|
||
|
CALL ZLACGV( IXFRM, X( KBEG ), 1 )
|
||
|
END IF
|
||
|
*
|
||
|
CALL ZGEMV( 'N', M, IXFRM, CONE, A( 1, KBEG ), LDA,
|
||
|
$ X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
|
||
|
CALL ZGERC( M, IXFRM, -DCMPLX( FACTOR ), X( 2*NXFRM+1 ), 1,
|
||
|
$ X( KBEG ), 1, A( 1, KBEG ), LDA )
|
||
|
*
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
X( 1 ) = ZLARND( 3, ISEED )
|
||
|
XABS = ABS( X( 1 ) )
|
||
|
IF( XABS.NE.ZERO ) THEN
|
||
|
CSIGN = X( 1 ) / XABS
|
||
|
ELSE
|
||
|
CSIGN = CONE
|
||
|
END IF
|
||
|
X( 2*NXFRM ) = CSIGN
|
||
|
*
|
||
|
* Scale the matrix A by D.
|
||
|
*
|
||
|
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
|
||
|
DO 40 IROW = 1, M
|
||
|
CALL ZSCAL( N, DCONJG( X( NXFRM+IROW ) ), A( IROW, 1 ),
|
||
|
$ LDA )
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
|
||
|
DO 50 JCOL = 1, N
|
||
|
CALL ZSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 )
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
IF( ITYPE.EQ.4 ) THEN
|
||
|
DO 60 JCOL = 1, N
|
||
|
CALL ZSCAL( M, DCONJG( X( NXFRM+JCOL ) ), A( 1, JCOL ), 1 )
|
||
|
60 CONTINUE
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZLAROR
|
||
|
*
|
||
|
END
|