*> \brief \b CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAEV2 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
* .. Scalar Arguments ..
* REAL CS1, RT1, RT2
* COMPLEX A, B, C, SN1
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
*> [ A B ]
*> [ CONJG(B) C ].
*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
*> eigenvector for RT1, giving the decomposition
*>
*> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
*> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] A
*> \verbatim
*> A is COMPLEX
*> The (1,1) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX
*> The (1,2) element and the conjugate of the (2,1) element of
*> the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is COMPLEX
*> The (2,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[out] RT1
*> \verbatim
*> RT1 is REAL
*> The eigenvalue of larger absolute value.
*> \endverbatim
*>
*> \param[out] RT2
*> \verbatim
*> RT2 is REAL
*> The eigenvalue of smaller absolute value.
*> \endverbatim
*>
*> \param[out] CS1
*> \verbatim
*> CS1 is REAL
*> \endverbatim
*>
*> \param[out] SN1
*> \verbatim
*> SN1 is COMPLEX
*> The vector (CS1, SN1) is a unit right eigenvector for RT1.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> RT1 is accurate to a few ulps barring over/underflow.
*>
*> RT2 may be inaccurate if there is massive cancellation in the
*> determinant A*C-B*B; higher precision or correctly rounded or
*> correctly truncated arithmetic would be needed to compute RT2
*> accurately in all cases.
*>
*> CS1 and SN1 are accurate to a few ulps barring over/underflow.
*>
*> Overflow is possible only if RT1 is within a factor of 5 of overflow.
*> Underflow is harmless if the input data is 0 or exceeds
*> underflow_threshold / macheps.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL CS1, RT1, RT2
COMPLEX A, B, C, SN1
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
REAL ONE
PARAMETER ( ONE = 1.0E0 )
* ..
* .. Local Scalars ..
REAL T
COMPLEX W
* ..
* .. External Subroutines ..
EXTERNAL SLAEV2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, REAL
* ..
* .. Executable Statements ..
*
IF( ABS( B ).EQ.ZERO ) THEN
W = ONE
ELSE
W = CONJG( B ) / ABS( B )
END IF
CALL SLAEV2( REAL( A ), ABS( B ), REAL( C ), RT1, RT2, CS1, T )
SN1 = W*T
RETURN
*
* End of CLAEV2
*
END