!> \brief \b CLARTG generates a plane rotation with real cosine and complex sine. ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! ! Definition: ! =========== ! ! SUBROUTINE CLARTG( F, G, C, S, R ) ! ! .. Scalar Arguments .. ! REAL(wp) C ! COMPLEX(wp) F, G, R, S ! .. ! !> \par Purpose: ! ============= !> !> \verbatim !> !> CLARTG generates a plane rotation so that !> !> [ C S ] . [ F ] = [ R ] !> [ -conjg(S) C ] [ G ] [ 0 ] !> !> where C is real and C**2 + |S|**2 = 1. !> !> The mathematical formulas used for C and S are !> !> sgn(x) = { x / |x|, x != 0 !> { 1, x = 0 !> !> R = sgn(F) * sqrt(|F|**2 + |G|**2) !> !> C = |F| / sqrt(|F|**2 + |G|**2) !> !> S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2) !> !> Special conditions: !> If G=0, then C=1 and S=0. !> If F=0, then C=0 and S is chosen so that R is real. !> !> When F and G are real, the formulas simplify to C = F/R and !> S = G/R, and the returned values of C, S, and R should be !> identical to those returned by SLARTG. !> !> The algorithm used to compute these quantities incorporates scaling !> to avoid overflow or underflow in computing the square root of the !> sum of squares. !> !> This is the same routine CROTG fom BLAS1, except that !> F and G are unchanged on return. !> !> Below, wp=>sp stands for single precision from LA_CONSTANTS module. !> \endverbatim ! ! Arguments: ! ========== ! !> \param[in] F !> \verbatim !> F is COMPLEX(wp) !> The first component of vector to be rotated. !> \endverbatim !> !> \param[in] G !> \verbatim !> G is COMPLEX(wp) !> The second component of vector to be rotated. !> \endverbatim !> !> \param[out] C !> \verbatim !> C is REAL(wp) !> The cosine of the rotation. !> \endverbatim !> !> \param[out] S !> \verbatim !> S is COMPLEX(wp) !> The sine of the rotation. !> \endverbatim !> !> \param[out] R !> \verbatim !> R is COMPLEX(wp) !> The nonzero component of the rotated vector. !> \endverbatim ! ! Authors: ! ======== ! !> \author Weslley Pereira, University of Colorado Denver, USA ! !> \date December 2021 ! !> \ingroup OTHERauxiliary ! !> \par Further Details: ! ===================== !> !> \verbatim !> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> \endverbatim ! subroutine CLARTG( f, g, c, s, r ) use LA_CONSTANTS, & only: wp=>sp, zero=>szero, one=>sone, two=>stwo, czero, & safmin=>ssafmin, safmax=>ssafmax ! ! -- LAPACK auxiliary routine -- ! -- LAPACK is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! February 2021 ! ! .. Scalar Arguments .. real(wp) c complex(wp) f, g, r, s ! .. ! .. Local Scalars .. real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmin, rtmax complex(wp) :: fs, gs, t ! .. ! .. Intrinsic Functions .. intrinsic :: abs, aimag, conjg, max, min, real, sqrt ! .. ! .. Statement Functions .. real(wp) :: ABSSQ ! .. ! .. Statement Function definitions .. ABSSQ( t ) = real( t )**2 + aimag( t )**2 ! .. ! .. Constants .. rtmin = sqrt( safmin ) ! .. ! .. Executable Statements .. ! if( g == czero ) then c = one s = czero r = f else if( f == czero ) then c = zero if( real(g) == zero ) then r = abs(aimag(g)) s = conjg( g ) / r elseif( aimag(g) == zero ) then r = abs(real(g)) s = conjg( g ) / r else g1 = max( abs(real(g)), abs(aimag(g)) ) rtmax = sqrt( safmax/2 ) if( g1 > rtmin .and. g1 < rtmax ) then ! ! Use unscaled algorithm ! ! The following two lines can be replaced by `d = abs( g )`. ! This algorithm do not use the intrinsic complex abs. g2 = ABSSQ( g ) d = sqrt( g2 ) s = conjg( g ) / d r = d else ! ! Use scaled algorithm ! u = min( safmax, max( safmin, g1 ) ) gs = g / u ! The following two lines can be replaced by `d = abs( gs )`. ! This algorithm do not use the intrinsic complex abs. g2 = ABSSQ( gs ) d = sqrt( g2 ) s = conjg( gs ) / d r = d*u end if end if else f1 = max( abs(real(f)), abs(aimag(f)) ) g1 = max( abs(real(g)), abs(aimag(g)) ) rtmax = sqrt( safmax/4 ) if( f1 > rtmin .and. f1 < rtmax .and. & g1 > rtmin .and. g1 < rtmax ) then ! ! Use unscaled algorithm ! f2 = ABSSQ( f ) g2 = ABSSQ( g ) h2 = f2 + g2 ! safmin <= f2 <= h2 <= safmax if( f2 >= h2 * safmin ) then ! safmin <= f2/h2 <= 1, and h2/f2 is finite c = sqrt( f2 / h2 ) r = f / c rtmax = rtmax * 2 if( f2 > rtmin .and. h2 < rtmax ) then ! safmin <= sqrt( f2*h2 ) <= safmax s = conjg( g ) * ( f / sqrt( f2*h2 ) ) else s = conjg( g ) * ( r / h2 ) end if else ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow. ! Moreover, ! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax, ! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax). ! Also, ! g2 >> f2, which means that h2 = g2. d = sqrt( f2 * h2 ) c = f2 / d if( c >= safmin ) then r = f / c else ! f2 / sqrt(f2 * h2) < safmin, then ! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax r = f * ( h2 / d ) end if s = conjg( g ) * ( f / d ) end if else ! ! Use scaled algorithm ! u = min( safmax, max( safmin, f1, g1 ) ) gs = g / u g2 = ABSSQ( gs ) if( f1 / u < rtmin ) then ! ! f is not well-scaled when scaled by g1. ! Use a different scaling for f. ! v = min( safmax, max( safmin, f1 ) ) w = v / u fs = f / v f2 = ABSSQ( fs ) h2 = f2*w**2 + g2 else ! ! Otherwise use the same scaling for f and g. ! w = one fs = f / u f2 = ABSSQ( fs ) h2 = f2 + g2 end if ! safmin <= f2 <= h2 <= safmax if( f2 >= h2 * safmin ) then ! safmin <= f2/h2 <= 1, and h2/f2 is finite c = sqrt( f2 / h2 ) r = fs / c rtmax = rtmax * 2 if( f2 > rtmin .and. h2 < rtmax ) then ! safmin <= sqrt( f2*h2 ) <= safmax s = conjg( gs ) * ( fs / sqrt( f2*h2 ) ) else s = conjg( gs ) * ( r / h2 ) end if else ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow. ! Moreover, ! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax, ! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax). ! Also, ! g2 >> f2, which means that h2 = g2. d = sqrt( f2 * h2 ) c = f2 / d if( c >= safmin ) then r = fs / c else ! f2 / sqrt(f2 * h2) < safmin, then ! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax r = fs * ( h2 / d ) end if s = conjg( gs ) * ( fs / d ) end if ! Rescale c and r c = c * w r = r * u end if end if return end subroutine