*> \brief \b DLAT2S converts a double-precision triangular matrix to a single-precision triangular matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAT2S + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAT2S( UPLO, N, A, LDA, SA, LDSA, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDA, LDSA, N
* ..
* .. Array Arguments ..
* REAL SA( LDSA, * )
* DOUBLE PRECISION A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAT2S converts a DOUBLE PRECISION triangular matrix, SA, to a SINGLE
*> PRECISION triangular matrix, A.
*>
*> RMAX is the overflow for the SINGLE PRECISION arithmetic
*> DLAS2S checks that all the entries of A are between -RMAX and
*> RMAX. If not the conversion is aborted and a flag is raised.
*>
*> This is an auxiliary routine so there is no argument checking.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the N-by-N triangular coefficient matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] SA
*> \verbatim
*> SA is REAL array, dimension (LDSA,N)
*> Only the UPLO part of SA is referenced. On exit, if INFO=0,
*> the N-by-N coefficient matrix SA; if INFO>0, the content of
*> the UPLO part of SA is unspecified.
*> \endverbatim
*>
*> \param[in] LDSA
*> \verbatim
*> LDSA is INTEGER
*> The leading dimension of the array SA. LDSA >= max(1,M).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> = 1: an entry of the matrix A is greater than the SINGLE
*> PRECISION overflow threshold, in this case, the content
*> of the UPLO part of SA in exit is unspecified.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleOTHERauxiliary
*
* =====================================================================
SUBROUTINE DLAT2S( UPLO, N, A, LDA, SA, LDSA, INFO )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LDSA, N
* ..
* .. Array Arguments ..
REAL SA( LDSA, * )
DOUBLE PRECISION A( LDA, * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION RMAX
LOGICAL UPPER
* ..
* .. External Functions ..
REAL SLAMCH
LOGICAL LSAME
EXTERNAL SLAMCH, LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
RMAX = SLAMCH( 'O' )
UPPER = LSAME( UPLO, 'U' )
IF( UPPER ) THEN
DO 20 J = 1, N
DO 10 I = 1, J
IF( ( A( I, J ).LT.-RMAX ) .OR. ( A( I, J ).GT.RMAX ) )
$ THEN
INFO = 1
GO TO 50
END IF
SA( I, J ) = REAL( A( I, J ) )
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = J, N
IF( ( A( I, J ).LT.-RMAX ) .OR. ( A( I, J ).GT.RMAX ) )
$ THEN
INFO = 1
GO TO 50
END IF
SA( I, J ) = REAL( A( I, J ) )
30 CONTINUE
40 CONTINUE
END IF
50 CONTINUE
*
RETURN
*
* End of DLAT2S
*
END