!> \brief \b SLARTG generates a plane rotation with real cosine and real sine. ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! ! Definition: ! =========== ! ! SUBROUTINE SLARTG( F, G, C, S, R ) ! ! .. Scalar Arguments .. ! REAL(wp) C, F, G, R, S ! .. ! !> \par Purpose: ! ============= !> !> \verbatim !> !> SLARTG generates a plane rotation so that !> !> [ C S ] . [ F ] = [ R ] !> [ -S C ] [ G ] [ 0 ] !> !> where C**2 + S**2 = 1. !> !> The mathematical formulas used for C and S are !> R = sign(F) * sqrt(F**2 + G**2) !> C = F / R !> S = G / R !> Hence C >= 0. The algorithm used to compute these quantities !> incorporates scaling to avoid overflow or underflow in computing the !> square root of the sum of squares. !> !> This version is discontinuous in R at F = 0 but it returns the same !> C and S as CLARTG for complex inputs (F,0) and (G,0). !> !> This is a more accurate version of the BLAS1 routine SROTG, !> with the following other differences: !> F and G are unchanged on return. !> If G=0, then C=1 and S=0. !> If F=0 and (G .ne. 0), then C=0 and S=sign(1,G) without doing any !> floating point operations (saves work in SBDSQR when !> there are zeros on the diagonal). !> !> Below, wp=>sp stands for single precision from LA_CONSTANTS module. !> \endverbatim ! ! Arguments: ! ========== ! !> \param[in] F !> \verbatim !> F is REAL(wp) !> The first component of vector to be rotated. !> \endverbatim !> !> \param[in] G !> \verbatim !> G is REAL(wp) !> The second component of vector to be rotated. !> \endverbatim !> !> \param[out] C !> \verbatim !> C is REAL(wp) !> The cosine of the rotation. !> \endverbatim !> !> \param[out] S !> \verbatim !> S is REAL(wp) !> The sine of the rotation. !> \endverbatim !> !> \param[out] R !> \verbatim !> R is REAL(wp) !> The nonzero component of the rotated vector. !> \endverbatim ! ! Authors: ! ======== ! !> \author Edward Anderson, Lockheed Martin ! !> \date July 2016 ! !> \ingroup OTHERauxiliary ! !> \par Contributors: ! ================== !> !> Weslley Pereira, University of Colorado Denver, USA ! !> \par Further Details: ! ===================== !> !> \verbatim !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> \endverbatim ! subroutine SLARTG( f, g, c, s, r ) use LA_CONSTANTS, & only: wp=>sp, zero=>szero, half=>shalf, one=>sone, & safmin=>ssafmin, safmax=>ssafmax ! ! -- LAPACK auxiliary routine -- ! -- LAPACK is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! February 2021 ! ! .. Scalar Arguments .. real(wp) :: c, f, g, r, s ! .. ! .. Local Scalars .. real(wp) :: d, f1, fs, g1, gs, u, rtmin, rtmax ! .. ! .. Intrinsic Functions .. intrinsic :: abs, sign, sqrt ! .. ! .. Constants .. rtmin = sqrt( safmin ) rtmax = sqrt( safmax/2 ) ! .. ! .. Executable Statements .. ! f1 = abs( f ) g1 = abs( g ) if( g == zero ) then c = one s = zero r = f else if( f == zero ) then c = zero s = sign( one, g ) r = g1 else if( f1 > rtmin .and. f1 < rtmax .and. & g1 > rtmin .and. g1 < rtmax ) then d = sqrt( f*f + g*g ) c = f1 / d r = sign( d, f ) s = g / r else u = min( safmax, max( safmin, f1, g1 ) ) fs = f / u gs = g / u d = sqrt( fs*fs + gs*gs ) c = abs( fs ) / d r = sign( d, f ) s = gs / r r = r*u end if return end subroutine