*> \brief \b STRSYL3 * * Definition: * =========== * * *> \par Purpose * ============= *> *> \verbatim *> *> STRSYL3 solves the real Sylvester matrix equation: *> *> op(A)*X + X*op(B) = scale*C or *> op(A)*X - X*op(B) = scale*C, *> *> where op(A) = A or A**T, and A and B are both upper quasi- *> triangular. A is M-by-M and B is N-by-N; the right hand side C and *> the solution X are M-by-N; and scale is an output scale factor, set *> <= 1 to avoid overflow in X. *> *> A and B must be in Schur canonical form (as returned by SHSEQR), that *> is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; *> each 2-by-2 diagonal block has its diagonal elements equal and its *> off-diagonal elements of opposite sign. *> *> This is the block version of the algorithm. *> \endverbatim * * Arguments * ========= * *> \param[in] TRANA *> \verbatim *> TRANA is CHARACTER*1 *> Specifies the option op(A): *> = 'N': op(A) = A (No transpose) *> = 'T': op(A) = A**T (Transpose) *> = 'C': op(A) = A**H (Conjugate transpose = Transpose) *> \endverbatim *> *> \param[in] TRANB *> \verbatim *> TRANB is CHARACTER*1 *> Specifies the option op(B): *> = 'N': op(B) = B (No transpose) *> = 'T': op(B) = B**T (Transpose) *> = 'C': op(B) = B**H (Conjugate transpose = Transpose) *> \endverbatim *> *> \param[in] ISGN *> \verbatim *> ISGN is INTEGER *> Specifies the sign in the equation: *> = +1: solve op(A)*X + X*op(B) = scale*C *> = -1: solve op(A)*X - X*op(B) = scale*C *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The order of the matrix A, and the number of rows in the *> matrices X and C. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix B, and the number of columns in the *> matrices X and C. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is REAL array, dimension (LDA,M) *> The upper quasi-triangular matrix A, in Schur canonical form. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is REAL array, dimension (LDB,N) *> The upper quasi-triangular matrix B, in Schur canonical form. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is REAL array, dimension (LDC,N) *> On entry, the M-by-N right hand side matrix C. *> On exit, C is overwritten by the solution matrix X. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M) *> \endverbatim *> *> \param[out] SCALE *> \verbatim *> SCALE is REAL *> The scale factor, scale, set <= 1 to avoid overflow in X. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> IWORK is INTEGER *> The dimension of the array IWORK. LIWORK >= ((M + NB - 1) / NB + 1) *> + ((N + NB - 1) / NB + 1), where NB is the optimal block size. *> *> If LIWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal dimension of the IWORK array, *> returns this value as the first entry of the IWORK array, and *> no error message related to LIWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] SWORK *> \verbatim *> SWORK is REAL array, dimension (MAX(2, ROWS), *> MAX(1,COLS)). *> On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS *> and SWORK(2) returns the optimal COLS. *> \endverbatim *> *> \param[in] LDSWORK *> \verbatim *> LDSWORK is INTEGER *> LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1) *> and NB is the optimal block size. *> *> If LDSWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal dimensions of the SWORK matrix, *> returns these values as the first and second entry of the SWORK *> matrix, and no error message related LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> = 1: A and B have common or very close eigenvalues; perturbed *> values were used to solve the equation (but the matrices *> A and B are unchanged). *> \endverbatim * * ===================================================================== * References: * E. S. Quintana-Orti and R. A. Van De Geijn (2003). Formal derivation of * algorithms: The triangular Sylvester equation, ACM Transactions * on Mathematical Software (TOMS), volume 29, pages 218--243. * * A. Schwarz and C. C. Kjelgaard Mikkelsen (2020). Robust Task-Parallel * Solution of the Triangular Sylvester Equation. Lecture Notes in * Computer Science, vol 12043, pages 82--92, Springer. * * Contributor: * Angelika Schwarz, Umea University, Sweden. * * ===================================================================== SUBROUTINE STRSYL3( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, $ LDC, SCALE, IWORK, LIWORK, SWORK, LDSWORK, $ INFO ) IMPLICIT NONE * * .. Scalar Arguments .. CHARACTER TRANA, TRANB INTEGER INFO, ISGN, LDA, LDB, LDC, M, N, $ LIWORK, LDSWORK REAL SCALE * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL A( LDA, * ), B( LDB, * ), C( LDC, * ), $ SWORK( LDSWORK, * ) * .. * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOTRNA, NOTRNB, LQUERY, SKIP INTEGER AWRK, BWRK, I, I1, I2, IINFO, J, J1, J2, JJ, $ K, K1, K2, L, L1, L2, LL, NBA, NB, NBB, PC REAL ANRM, BIGNUM, BNRM, CNRM, SCAL, SCALOC, $ SCAMIN, SGN, XNRM, BUF, SMLNUM * .. * .. Local Arrays .. REAL WNRM( MAX( M, N ) ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV REAL SLANGE, SLAMCH, SLARMM EXTERNAL SLANGE, SLAMCH, SLARMM, ILAENV, LSAME * .. * .. External Subroutines .. EXTERNAL SGEMM, SLASCL, SSCAL, STRSYL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, EXPONENT, MAX, MIN, REAL * .. * .. Executable Statements .. * * Decode and Test input parameters * NOTRNA = LSAME( TRANA, 'N' ) NOTRNB = LSAME( TRANB, 'N' ) * * Use the same block size for all matrices. * NB = MAX(8, ILAENV( 1, 'STRSYL', '', M, N, -1, -1) ) * * Compute number of blocks in A and B * NBA = MAX( 1, (M + NB - 1) / NB ) NBB = MAX( 1, (N + NB - 1) / NB ) * * Compute workspace * INFO = 0 LQUERY = ( LIWORK.EQ.-1 .OR. LDSWORK.EQ.-1 ) IWORK( 1 ) = NBA + NBB + 2 IF( LQUERY ) THEN LDSWORK = 2 SWORK( 1, 1 ) = MAX( NBA, NBB ) SWORK( 2, 1 ) = 2 * NBB + NBA END IF * * Test the input arguments * IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'T' ) .AND. .NOT. $ LSAME( TRANA, 'C' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'T' ) .AND. .NOT. $ LSAME( TRANB, 'C' ) ) THEN INFO = -2 ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 ELSE IF( .NOT.LQUERY .AND. LIWORK.LT.IWORK(1) ) THEN INFO = -14 ELSE IF( .NOT.LQUERY .AND. LDSWORK.LT.MAX( NBA, NBB ) ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'STRSYL3', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * SCALE = ONE IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * * Use unblocked code for small problems or if insufficient * workspaces are provided * IF( MIN( NBA, NBB ).EQ.1 .OR. LDSWORK.LT.MAX( NBA, NBB ) .OR. $ LIWORK.LT.IWORK(1) ) THEN CALL STRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, $ C, LDC, SCALE, INFO ) RETURN END IF * * Set constants to control overflow * SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM * * Partition A such that 2-by-2 blocks on the diagonal are not split * SKIP = .FALSE. DO I = 1, NBA IWORK( I ) = ( I - 1 ) * NB + 1 END DO IWORK( NBA + 1 ) = M + 1 DO K = 1, NBA L1 = IWORK( K ) L2 = IWORK( K + 1 ) - 1 DO L = L1, L2 IF( SKIP ) THEN SKIP = .FALSE. CYCLE END IF IF( L.GE.M ) THEN * A( M, M ) is a 1-by-1 block CYCLE END IF IF( A( L, L+1 ).NE.ZERO .AND. A( L+1, L ).NE.ZERO ) THEN * Check if 2-by-2 block is split IF( L + 1 .EQ. IWORK( K + 1 ) ) THEN IWORK( K + 1 ) = IWORK( K + 1 ) + 1 CYCLE END IF SKIP = .TRUE. END IF END DO END DO IWORK( NBA + 1 ) = M + 1 IF( IWORK( NBA ).GE.IWORK( NBA + 1 ) ) THEN IWORK( NBA ) = IWORK( NBA + 1 ) NBA = NBA - 1 END IF * * Partition B such that 2-by-2 blocks on the diagonal are not split * PC = NBA + 1 SKIP = .FALSE. DO I = 1, NBB IWORK( PC + I ) = ( I - 1 ) * NB + 1 END DO IWORK( PC + NBB + 1 ) = N + 1 DO K = 1, NBB L1 = IWORK( PC + K ) L2 = IWORK( PC + K + 1 ) - 1 DO L = L1, L2 IF( SKIP ) THEN SKIP = .FALSE. CYCLE END IF IF( L.GE.N ) THEN * B( N, N ) is a 1-by-1 block CYCLE END IF IF( B( L, L+1 ).NE.ZERO .AND. B( L+1, L ).NE.ZERO ) THEN * Check if 2-by-2 block is split IF( L + 1 .EQ. IWORK( PC + K + 1 ) ) THEN IWORK( PC + K + 1 ) = IWORK( PC + K + 1 ) + 1 CYCLE END IF SKIP = .TRUE. END IF END DO END DO IWORK( PC + NBB + 1 ) = N + 1 IF( IWORK( PC + NBB ).GE.IWORK( PC + NBB + 1 ) ) THEN IWORK( PC + NBB ) = IWORK( PC + NBB + 1 ) NBB = NBB - 1 END IF * * Set local scaling factors - must never attain zero. * DO L = 1, NBB DO K = 1, NBA SWORK( K, L ) = ONE END DO END DO * * Fallback scaling factor to prevent flushing of SWORK( K, L ) to zero. * This scaling is to ensure compatibility with TRSYL and may get flushed. * BUF = ONE * * Compute upper bounds of blocks of A and B * AWRK = NBB DO K = 1, NBA K1 = IWORK( K ) K2 = IWORK( K + 1 ) DO L = K, NBA L1 = IWORK( L ) L2 = IWORK( L + 1 ) IF( NOTRNA ) THEN SWORK( K, AWRK + L ) = SLANGE( 'I', K2-K1, L2-L1, $ A( K1, L1 ), LDA, WNRM ) ELSE SWORK( L, AWRK + K ) = SLANGE( '1', K2-K1, L2-L1, $ A( K1, L1 ), LDA, WNRM ) END IF END DO END DO BWRK = NBB + NBA DO K = 1, NBB K1 = IWORK( PC + K ) K2 = IWORK( PC + K + 1 ) DO L = K, NBB L1 = IWORK( PC + L ) L2 = IWORK( PC + L + 1 ) IF( NOTRNB ) THEN SWORK( K, BWRK + L ) = SLANGE( 'I', K2-K1, L2-L1, $ B( K1, L1 ), LDB, WNRM ) ELSE SWORK( L, BWRK + K ) = SLANGE( '1', K2-K1, L2-L1, $ B( K1, L1 ), LDB, WNRM ) END IF END DO END DO * SGN = REAL( ISGN ) * IF( NOTRNA .AND. NOTRNB ) THEN * * Solve A*X + ISGN*X*B = scale*C. * * The (K,L)th block of X is determined starting from * bottom-left corner column by column by * * A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) * * Where * M L-1 * R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]. * I=K+1 J=1 * * Start loop over block rows (index = K) and block columns (index = L) * DO K = NBA, 1, -1 * * K1: row index of the first row in X( K, L ) * K2: row index of the first row in X( K+1, L ) * so the K2 - K1 is the column count of the block X( K, L ) * K1 = IWORK( K ) K2 = IWORK( K + 1 ) DO L = 1, NBB * * L1: column index of the first column in X( K, L ) * L2: column index of the first column in X( K, L + 1) * so that L2 - L1 is the row count of the block X( K, L ) * L1 = IWORK( PC + L ) L2 = IWORK( PC + L + 1 ) * CALL STRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1, $ A( K1, K1 ), LDA, $ B( L1, L1 ), LDB, $ C( K1, L1 ), LDC, SCALOC, IINFO ) INFO = MAX( INFO, IINFO ) * IF ( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN IF( SCALOC .EQ. ZERO ) THEN * The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) * is larger than the product of BIGNUM**2 and cannot be * represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). * Mark the computation as pointless. BUF = ZERO ELSE * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) END IF DO JJ = 1, NBB DO LL = 1, NBA * Bound by BIGNUM to not introduce Inf. The value * is irrelevant; corresponding entries of the * solution will be flushed in consistency scaling. SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO END IF SWORK( K, L ) = SCALOC * SWORK( K, L ) XNRM = SLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC, $ WNRM ) * DO I = K - 1, 1, -1 * * C( I, L ) := C( I, L ) - A( I, K ) * C( K, L ) * I1 = IWORK( I ) I2 = IWORK( I + 1 ) * * Compute scaling factor to survive the linear update * simulating consistent scaling. * CNRM = SLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ), $ LDC, WNRM ) SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) ) CNRM = CNRM * ( SCAMIN / SWORK( I, L ) ) XNRM = XNRM * ( SCAMIN / SWORK( K, L ) ) ANRM = SWORK( I, AWRK + K ) SCALOC = SLARMM( ANRM, XNRM, CNRM ) IF( SCALOC * SCAMIN .EQ. ZERO ) THEN * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) DO JJ = 1, NBB DO LL = 1, NBA SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO SCAMIN = SCAMIN / 2.E0**EXPONENT( SCALOC ) SCALOC = SCALOC / 2.E0**EXPONENT( SCALOC ) END IF CNRM = CNRM * SCALOC XNRM = XNRM * SCALOC * * Simultaneously apply the robust update factor and the * consistency scaling factor to C( I, L ) and C( K, L ). * SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC IF (SCAL .NE. ONE) THEN DO JJ = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, JJ ), 1) END DO ENDIF * SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC IF (SCAL .NE. ONE) THEN DO LL = L1, L2-1 CALL SSCAL( I2-I1, SCAL, C( I1, LL ), 1) END DO ENDIF * * Record current scaling factor * SWORK( K, L ) = SCAMIN * SCALOC SWORK( I, L ) = SCAMIN * SCALOC * CALL SGEMM( 'N', 'N', I2-I1, L2-L1, K2-K1, -ONE, $ A( I1, K1 ), LDA, C( K1, L1 ), LDC, $ ONE, C( I1, L1 ), LDC ) * END DO * DO J = L + 1, NBB * * C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J ) * J1 = IWORK( PC + J ) J2 = IWORK( PC + J + 1 ) * * Compute scaling factor to survive the linear update * simulating consistent scaling. * CNRM = SLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ), $ LDC, WNRM ) SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) ) CNRM = CNRM * ( SCAMIN / SWORK( K, J ) ) XNRM = XNRM * ( SCAMIN / SWORK( K, L ) ) BNRM = SWORK(L, BWRK + J) SCALOC = SLARMM( BNRM, XNRM, CNRM ) IF( SCALOC * SCAMIN .EQ. ZERO ) THEN * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) DO JJ = 1, NBB DO LL = 1, NBA SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO SCAMIN = SCAMIN / 2.E0**EXPONENT( SCALOC ) SCALOC = SCALOC / 2.E0**EXPONENT( SCALOC ) END IF CNRM = CNRM * SCALOC XNRM = XNRM * SCALOC * * Simultaneously apply the robust update factor and the * consistency scaling factor to C( K, J ) and C( K, L). * SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC IF( SCAL .NE. ONE ) THEN DO LL = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, LL ), 1 ) END DO ENDIF * SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC IF( SCAL .NE. ONE ) THEN DO JJ = J1, J2-1 CALL SSCAL( K2-K1, SCAL, C( K1, JJ ), 1 ) END DO ENDIF * * Record current scaling factor * SWORK( K, L ) = SCAMIN * SCALOC SWORK( K, J ) = SCAMIN * SCALOC * CALL SGEMM( 'N', 'N', K2-K1, J2-J1, L2-L1, -SGN, $ C( K1, L1 ), LDC, B( L1, J1 ), LDB, $ ONE, C( K1, J1 ), LDC ) END DO END DO END DO ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN * * Solve A**T*X + ISGN*X*B = scale*C. * * The (K,L)th block of X is determined starting from * upper-left corner column by column by * * A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) * * Where * K-1 L-1 * R(K,L) = SUM [A(I,K)**T*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)] * I=1 J=1 * * Start loop over block rows (index = K) and block columns (index = L) * DO K = 1, NBA * * K1: row index of the first row in X( K, L ) * K2: row index of the first row in X( K+1, L ) * so the K2 - K1 is the column count of the block X( K, L ) * K1 = IWORK( K ) K2 = IWORK( K + 1 ) DO L = 1, NBB * * L1: column index of the first column in X( K, L ) * L2: column index of the first column in X( K, L + 1) * so that L2 - L1 is the row count of the block X( K, L ) * L1 = IWORK( PC + L ) L2 = IWORK( PC + L + 1 ) * CALL STRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1, $ A( K1, K1 ), LDA, $ B( L1, L1 ), LDB, $ C( K1, L1 ), LDC, SCALOC, IINFO ) INFO = MAX( INFO, IINFO ) * IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN IF( SCALOC .EQ. ZERO ) THEN * The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) * is larger than the product of BIGNUM**2 and cannot be * represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). * Mark the computation as pointless. BUF = ZERO ELSE * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) END IF DO JJ = 1, NBB DO LL = 1, NBA * Bound by BIGNUM to not introduce Inf. The value * is irrelevant; corresponding entries of the * solution will be flushed in consistency scaling. SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO END IF SWORK( K, L ) = SCALOC * SWORK( K, L ) XNRM = SLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC, $ WNRM ) * DO I = K + 1, NBA * * C( I, L ) := C( I, L ) - A( K, I )**T * C( K, L ) * I1 = IWORK( I ) I2 = IWORK( I + 1 ) * * Compute scaling factor to survive the linear update * simulating consistent scaling. * CNRM = SLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ), $ LDC, WNRM ) SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) ) CNRM = CNRM * ( SCAMIN / SWORK( I, L ) ) XNRM = XNRM * ( SCAMIN / SWORK( K, L ) ) ANRM = SWORK( I, AWRK + K ) SCALOC = SLARMM( ANRM, XNRM, CNRM ) IF( SCALOC * SCAMIN .EQ. ZERO ) THEN * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) DO JJ = 1, NBB DO LL = 1, NBA SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO SCAMIN = SCAMIN / 2.E0**EXPONENT( SCALOC ) SCALOC = SCALOC / 2.E0**EXPONENT( SCALOC ) END IF CNRM = CNRM * SCALOC XNRM = XNRM * SCALOC * * Simultaneously apply the robust update factor and the * consistency scaling factor to to C( I, L ) and C( K, L ). * SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC IF (SCAL .NE. ONE) THEN DO LL = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, LL ), 1 ) END DO ENDIF * SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC IF (SCAL .NE. ONE) THEN DO LL = L1, L2-1 CALL SSCAL( I2-I1, SCAL, C( I1, LL ), 1 ) END DO ENDIF * * Record current scaling factor * SWORK( K, L ) = SCAMIN * SCALOC SWORK( I, L ) = SCAMIN * SCALOC * CALL SGEMM( 'T', 'N', I2-I1, L2-L1, K2-K1, -ONE, $ A( K1, I1 ), LDA, C( K1, L1 ), LDC, $ ONE, C( I1, L1 ), LDC ) END DO * DO J = L + 1, NBB * * C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J ) * J1 = IWORK( PC + J ) J2 = IWORK( PC + J + 1 ) * * Compute scaling factor to survive the linear update * simulating consistent scaling. * CNRM = SLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ), $ LDC, WNRM ) SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) ) CNRM = CNRM * ( SCAMIN / SWORK( K, J ) ) XNRM = XNRM * ( SCAMIN / SWORK( K, L ) ) BNRM = SWORK( L, BWRK + J ) SCALOC = SLARMM( BNRM, XNRM, CNRM ) IF( SCALOC * SCAMIN .EQ. ZERO ) THEN * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) DO JJ = 1, NBB DO LL = 1, NBA SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO SCAMIN = SCAMIN / 2.E0**EXPONENT( SCALOC ) SCALOC = SCALOC / 2.E0**EXPONENT( SCALOC ) END IF CNRM = CNRM * SCALOC XNRM = XNRM * SCALOC * * Simultaneously apply the robust update factor and the * consistency scaling factor to to C( K, J ) and C( K, L ). * SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC IF( SCAL .NE. ONE ) THEN DO LL = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, LL ), 1 ) END DO ENDIF * SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC IF( SCAL .NE. ONE ) THEN DO JJ = J1, J2-1 CALL SSCAL( K2-K1, SCAL, C( K1, JJ ), 1 ) END DO ENDIF * * Record current scaling factor * SWORK( K, L ) = SCAMIN * SCALOC SWORK( K, J ) = SCAMIN * SCALOC * CALL SGEMM( 'N', 'N', K2-K1, J2-J1, L2-L1, -SGN, $ C( K1, L1 ), LDC, B( L1, J1 ), LDB, $ ONE, C( K1, J1 ), LDC ) END DO END DO END DO ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN * * Solve A**T*X + ISGN*X*B**T = scale*C. * * The (K,L)th block of X is determined starting from * top-right corner column by column by * * A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) * * Where * K-1 N * R(K,L) = SUM [A(I,K)**T*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. * I=1 J=L+1 * * Start loop over block rows (index = K) and block columns (index = L) * DO K = 1, NBA * * K1: row index of the first row in X( K, L ) * K2: row index of the first row in X( K+1, L ) * so the K2 - K1 is the column count of the block X( K, L ) * K1 = IWORK( K ) K2 = IWORK( K + 1 ) DO L = NBB, 1, -1 * * L1: column index of the first column in X( K, L ) * L2: column index of the first column in X( K, L + 1) * so that L2 - L1 is the row count of the block X( K, L ) * L1 = IWORK( PC + L ) L2 = IWORK( PC + L + 1 ) * CALL STRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1, $ A( K1, K1 ), LDA, $ B( L1, L1 ), LDB, $ C( K1, L1 ), LDC, SCALOC, IINFO ) INFO = MAX( INFO, IINFO ) * IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN IF( SCALOC .EQ. ZERO ) THEN * The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) * is larger than the product of BIGNUM**2 and cannot be * represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). * Mark the computation as pointless. BUF = ZERO ELSE * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) END IF DO JJ = 1, NBB DO LL = 1, NBA * Bound by BIGNUM to not introduce Inf. The value * is irrelevant; corresponding entries of the * solution will be flushed in consistency scaling. SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO END IF SWORK( K, L ) = SCALOC * SWORK( K, L ) XNRM = SLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC, $ WNRM ) * DO I = K + 1, NBA * * C( I, L ) := C( I, L ) - A( K, I )**T * C( K, L ) * I1 = IWORK( I ) I2 = IWORK( I + 1 ) * * Compute scaling factor to survive the linear update * simulating consistent scaling. * CNRM = SLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ), $ LDC, WNRM ) SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) ) CNRM = CNRM * ( SCAMIN / SWORK( I, L ) ) XNRM = XNRM * ( SCAMIN / SWORK( K, L ) ) ANRM = SWORK( I, AWRK + K ) SCALOC = SLARMM( ANRM, XNRM, CNRM ) IF( SCALOC * SCAMIN .EQ. ZERO ) THEN * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) DO JJ = 1, NBB DO LL = 1, NBA SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO SCAMIN = SCAMIN / 2.E0**EXPONENT( SCALOC ) SCALOC = SCALOC / 2.E0**EXPONENT( SCALOC ) END IF CNRM = CNRM * SCALOC XNRM = XNRM * SCALOC * * Simultaneously apply the robust update factor and the * consistency scaling factor to C( I, L ) and C( K, L ). * SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC IF (SCAL .NE. ONE) THEN DO LL = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, LL ), 1 ) END DO ENDIF * SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC IF (SCAL .NE. ONE) THEN DO LL = L1, L2-1 CALL SSCAL( I2-I1, SCAL, C( I1, LL ), 1 ) END DO ENDIF * * Record current scaling factor * SWORK( K, L ) = SCAMIN * SCALOC SWORK( I, L ) = SCAMIN * SCALOC * CALL SGEMM( 'T', 'N', I2-I1, L2-L1, K2-K1, -ONE, $ A( K1, I1 ), LDA, C( K1, L1 ), LDC, $ ONE, C( I1, L1 ), LDC ) END DO * DO J = 1, L - 1 * * C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**T * J1 = IWORK( PC + J ) J2 = IWORK( PC + J + 1 ) * * Compute scaling factor to survive the linear update * simulating consistent scaling. * CNRM = SLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ), $ LDC, WNRM ) SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) ) CNRM = CNRM * ( SCAMIN / SWORK( K, J ) ) XNRM = XNRM * ( SCAMIN / SWORK( K, L ) ) BNRM = SWORK( L, BWRK + J ) SCALOC = SLARMM( BNRM, XNRM, CNRM ) IF( SCALOC * SCAMIN .EQ. ZERO ) THEN * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) DO JJ = 1, NBB DO LL = 1, NBA SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO SCAMIN = SCAMIN / 2.E0**EXPONENT( SCALOC ) SCALOC = SCALOC / 2.E0**EXPONENT( SCALOC ) END IF CNRM = CNRM * SCALOC XNRM = XNRM * SCALOC * * Simultaneously apply the robust update factor and the * consistency scaling factor to C( K, J ) and C( K, L ). * SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC IF( SCAL .NE. ONE ) THEN DO LL = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, LL ), 1) END DO ENDIF * SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC IF( SCAL .NE. ONE ) THEN DO JJ = J1, J2-1 CALL SSCAL( K2-K1, SCAL, C( K1, JJ ), 1 ) END DO ENDIF * * Record current scaling factor * SWORK( K, L ) = SCAMIN * SCALOC SWORK( K, J ) = SCAMIN * SCALOC * CALL SGEMM( 'N', 'T', K2-K1, J2-J1, L2-L1, -SGN, $ C( K1, L1 ), LDC, B( J1, L1 ), LDB, $ ONE, C( K1, J1 ), LDC ) END DO END DO END DO ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN * * Solve A*X + ISGN*X*B**T = scale*C. * * The (K,L)th block of X is determined starting from * bottom-right corner column by column by * * A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) * * Where * M N * R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. * I=K+1 J=L+1 * * Start loop over block rows (index = K) and block columns (index = L) * DO K = NBA, 1, -1 * * K1: row index of the first row in X( K, L ) * K2: row index of the first row in X( K+1, L ) * so the K2 - K1 is the column count of the block X( K, L ) * K1 = IWORK( K ) K2 = IWORK( K + 1 ) DO L = NBB, 1, -1 * * L1: column index of the first column in X( K, L ) * L2: column index of the first column in X( K, L + 1) * so that L2 - L1 is the row count of the block X( K, L ) * L1 = IWORK( PC + L ) L2 = IWORK( PC + L + 1 ) * CALL STRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1, $ A( K1, K1 ), LDA, $ B( L1, L1 ), LDB, $ C( K1, L1 ), LDC, SCALOC, IINFO ) INFO = MAX( INFO, IINFO ) * IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN IF( SCALOC .EQ. ZERO ) THEN * The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) * is larger than the product of BIGNUM**2 and cannot be * represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). * Mark the computation as pointless. BUF = ZERO ELSE * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) END IF DO JJ = 1, NBB DO LL = 1, NBA * Bound by BIGNUM to not introduce Inf. The value * is irrelevant; corresponding entries of the * solution will be flushed in consistency scaling. SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO END IF SWORK( K, L ) = SCALOC * SWORK( K, L ) XNRM = SLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC, $ WNRM ) * DO I = 1, K - 1 * * C( I, L ) := C( I, L ) - A( I, K ) * C( K, L ) * I1 = IWORK( I ) I2 = IWORK( I + 1 ) * * Compute scaling factor to survive the linear update * simulating consistent scaling. * CNRM = SLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ), $ LDC, WNRM ) SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) ) CNRM = CNRM * ( SCAMIN / SWORK( I, L ) ) XNRM = XNRM * ( SCAMIN / SWORK( K, L ) ) ANRM = SWORK( I, AWRK + K ) SCALOC = SLARMM( ANRM, XNRM, CNRM ) IF( SCALOC * SCAMIN .EQ. ZERO ) THEN * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) DO JJ = 1, NBB DO LL = 1, NBA SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO SCAMIN = SCAMIN / 2.E0**EXPONENT( SCALOC ) SCALOC = SCALOC / 2.E0**EXPONENT( SCALOC ) END IF CNRM = CNRM * SCALOC XNRM = XNRM * SCALOC * * Simultaneously apply the robust update factor and the * consistency scaling factor to C( I, L ) and C( K, L ). * SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC IF (SCAL .NE. ONE) THEN DO LL = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, LL ), 1 ) END DO ENDIF * SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC IF (SCAL .NE. ONE) THEN DO LL = L1, L2-1 CALL SSCAL( I2-I1, SCAL, C( I1, LL ), 1 ) END DO ENDIF * * Record current scaling factor * SWORK( K, L ) = SCAMIN * SCALOC SWORK( I, L ) = SCAMIN * SCALOC * CALL SGEMM( 'N', 'N', I2-I1, L2-L1, K2-K1, -ONE, $ A( I1, K1 ), LDA, C( K1, L1 ), LDC, $ ONE, C( I1, L1 ), LDC ) * END DO * DO J = 1, L - 1 * * C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**T * J1 = IWORK( PC + J ) J2 = IWORK( PC + J + 1 ) * * Compute scaling factor to survive the linear update * simulating consistent scaling. * CNRM = SLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ), $ LDC, WNRM ) SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) ) CNRM = CNRM * ( SCAMIN / SWORK( K, J ) ) XNRM = XNRM * ( SCAMIN / SWORK( K, L ) ) BNRM = SWORK( L, BWRK + J ) SCALOC = SLARMM( BNRM, XNRM, CNRM ) IF( SCALOC * SCAMIN .EQ. ZERO ) THEN * Use second scaling factor to prevent flushing to zero. BUF = BUF*2.E0**EXPONENT( SCALOC ) DO JJ = 1, NBB DO LL = 1, NBA SWORK( LL, JJ ) = MIN( BIGNUM, $ SWORK( LL, JJ ) / 2.E0**EXPONENT( SCALOC ) ) END DO END DO SCAMIN = SCAMIN / 2.E0**EXPONENT( SCALOC ) SCALOC = SCALOC / 2.E0**EXPONENT( SCALOC ) END IF CNRM = CNRM * SCALOC XNRM = XNRM * SCALOC * * Simultaneously apply the robust update factor and the * consistency scaling factor to C( K, J ) and C( K, L ). * SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC IF( SCAL .NE. ONE ) THEN DO JJ = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, JJ ), 1 ) END DO ENDIF * SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC IF( SCAL .NE. ONE ) THEN DO JJ = J1, J2-1 CALL SSCAL( K2-K1, SCAL, C( K1, JJ ), 1 ) END DO ENDIF * * Record current scaling factor * SWORK( K, L ) = SCAMIN * SCALOC SWORK( K, J ) = SCAMIN * SCALOC * CALL SGEMM( 'N', 'T', K2-K1, J2-J1, L2-L1, -SGN, $ C( K1, L1 ), LDC, B( J1, L1 ), LDB, $ ONE, C( K1, J1 ), LDC ) END DO END DO END DO * END IF * * Reduce local scaling factors * SCALE = SWORK( 1, 1 ) DO K = 1, NBA DO L = 1, NBB SCALE = MIN( SCALE, SWORK( K, L ) ) END DO END DO * IF( SCALE .EQ. ZERO ) THEN * * The magnitude of the largest entry of the solution is larger * than the product of BIGNUM**2 and cannot be represented in the * form (1/SCALE)*X if SCALE is REAL. Set SCALE to zero and give up. * IWORK(1) = NBA + NBB + 2 SWORK(1,1) = MAX( NBA, NBB ) SWORK(2,1) = 2 * NBB + NBA RETURN END IF * * Realize consistent scaling * DO K = 1, NBA K1 = IWORK( K ) K2 = IWORK( K + 1 ) DO L = 1, NBB L1 = IWORK( PC + L ) L2 = IWORK( PC + L + 1 ) SCAL = SCALE / SWORK( K, L ) IF( SCAL .NE. ONE ) THEN DO LL = L1, L2-1 CALL SSCAL( K2-K1, SCAL, C( K1, LL ), 1 ) END DO ENDIF END DO END DO * IF( BUF .NE. ONE .AND. BUF.GT.ZERO ) THEN * * Decrease SCALE as much as possible. * SCALOC = MIN( SCALE / SMLNUM, ONE / BUF ) BUF = BUF * SCALOC SCALE = SCALE / SCALOC END IF IF( BUF.NE.ONE .AND. BUF.GT.ZERO ) THEN * * In case of overly aggressive scaling during the computation, * flushing of the global scale factor may be prevented by * undoing some of the scaling. This step is to ensure that * this routine flushes only scale factors that TRSYL also * flushes and be usable as a drop-in replacement. * * How much can the normwise largest entry be upscaled? * SCAL = C( 1, 1 ) DO K = 1, M DO L = 1, N SCAL = MAX( SCAL, ABS( C( K, L ) ) ) END DO END DO * * Increase BUF as close to 1 as possible and apply scaling. * SCALOC = MIN( BIGNUM / SCAL, ONE / BUF ) BUF = BUF * SCALOC CALL SLASCL( 'G', -1, -1, ONE, SCALOC, M, N, C, LDC, IWORK ) END IF * * Combine with buffer scaling factor. SCALE will be flushed if * BUF is less than one here. * SCALE = SCALE * BUF * * Restore workspace dimensions * IWORK(1) = NBA + NBB + 2 SWORK(1,1) = MAX( NBA, NBB ) SWORK(2,1) = 2 * NBB + NBA * RETURN * * End of STRSYL3 * END