*> \brief \b ZHFRK performs a Hermitian rank-k operation for matrix in RFP format.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZHFRK + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
* C )
*
* .. Scalar Arguments ..
* DOUBLE PRECISION ALPHA, BETA
* INTEGER K, LDA, N
* CHARACTER TRANS, TRANSR, UPLO
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), C( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Level 3 BLAS like routine for C in RFP Format.
*>
*> ZHFRK performs one of the Hermitian rank--k operations
*>
*> C := alpha*A*A**H + beta*C,
*>
*> or
*>
*> C := alpha*A**H*A + beta*C,
*>
*> where alpha and beta are real scalars, C is an n--by--n Hermitian
*> matrix and A is an n--by--k matrix in the first case and a k--by--n
*> matrix in the second case.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANSR
*> \verbatim
*> TRANSR is CHARACTER*1
*> = 'N': The Normal Form of RFP A is stored;
*> = 'C': The Conjugate-transpose Form of RFP A is stored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array C is to be referenced as
*> follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of C
*> is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of C
*> is to be referenced.
*>
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
*>
*> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
*>
*> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
*>
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix C. N must be
*> at least zero.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> On entry with TRANS = 'N' or 'n', K specifies the number
*> of columns of the matrix A, and on entry with
*> TRANS = 'C' or 'c', K specifies the number of rows of the
*> matrix A. K must be at least zero.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is DOUBLE PRECISION
*> On entry, ALPHA specifies the scalar alpha.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,ka)
*> where KA
*> is K when TRANS = 'N' or 'n', and is N otherwise. Before
*> entry with TRANS = 'N' or 'n', the leading N--by--K part of
*> the array A must contain the matrix A, otherwise the leading
*> K--by--N part of the array A must contain the matrix A.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. When TRANS = 'N' or 'n'
*> then LDA must be at least max( 1, n ), otherwise LDA must
*> be at least max( 1, k ).
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION
*> On entry, BETA specifies the scalar beta.
*> Unchanged on exit.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX*16 array, dimension (N*(N+1)/2)
*> On entry, the matrix A in RFP Format. RFP Format is
*> described by TRANSR, UPLO and N. Note that the imaginary
*> parts of the diagonal elements need not be set, they are
*> assumed to be zero, and on exit they are set to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*
* =====================================================================
SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
$ C )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA, BETA
INTEGER K, LDA, N
CHARACTER TRANS, TRANSR, UPLO
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), C( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
COMPLEX*16 CZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS
INTEGER INFO, NROWA, J, NK, N1, N2
COMPLEX*16 CALPHA, CBETA
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEMM, ZHERK
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, DCMPLX
* ..
* .. Executable Statements ..
*
*
* Test the input parameters.
*
INFO = 0
NORMALTRANSR = LSAME( TRANSR, 'N' )
LOWER = LSAME( UPLO, 'L' )
NOTRANS = LSAME( TRANS, 'N' )
*
IF( NOTRANS ) THEN
NROWA = N
ELSE
NROWA = K
END IF
*
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
INFO = -1
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHFRK ', -INFO )
RETURN
END IF
*
* Quick return if possible.
*
* The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
* done (it is in ZHERK for example) and left in the general case.
*
IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
$ ( BETA.EQ.ONE ) ) )RETURN
*
IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
DO J = 1, ( ( N*( N+1 ) ) / 2 )
C( J ) = CZERO
END DO
RETURN
END IF
*
CALPHA = DCMPLX( ALPHA, ZERO )
CBETA = DCMPLX( BETA, ZERO )
*
* C is N-by-N.
* If N is odd, set NISODD = .TRUE., and N1 and N2.
* If N is even, NISODD = .FALSE., and NK.
*
IF( MOD( N, 2 ).EQ.0 ) THEN
NISODD = .FALSE.
NK = N / 2
ELSE
NISODD = .TRUE.
IF( LOWER ) THEN
N2 = N / 2
N1 = N - N2
ELSE
N1 = N / 2
N2 = N - N1
END IF
END IF
*
IF( NISODD ) THEN
*
* N is odd
*
IF( NORMALTRANSR ) THEN
*
* N is odd and TRANSR = 'N'
*
IF( LOWER ) THEN
*
* N is odd, TRANSR = 'N', and UPLO = 'L'
*
IF( NOTRANS ) THEN
*
* N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
*
CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( 1 ), N )
CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
$ BETA, C( N+1 ), N )
CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
$ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
*
ELSE
*
* N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
*
CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( 1 ), N )
CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
$ BETA, C( N+1 ), N )
CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
$ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
*
END IF
*
ELSE
*
* N is odd, TRANSR = 'N', and UPLO = 'U'
*
IF( NOTRANS ) THEN
*
* N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
*
CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( N2+1 ), N )
CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
$ BETA, C( N1+1 ), N )
CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
$ LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
*
ELSE
*
* N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
*
CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( N2+1 ), N )
CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
$ BETA, C( N1+1 ), N )
CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
$ LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
*
END IF
*
END IF
*
ELSE
*
* N is odd, and TRANSR = 'C'
*
IF( LOWER ) THEN
*
* N is odd, TRANSR = 'C', and UPLO = 'L'
*
IF( NOTRANS ) THEN
*
* N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
*
CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( 1 ), N1 )
CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
$ BETA, C( 2 ), N1 )
CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
$ LDA, A( N1+1, 1 ), LDA, CBETA,
$ C( N1*N1+1 ), N1 )
*
ELSE
*
* N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
*
CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( 1 ), N1 )
CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
$ BETA, C( 2 ), N1 )
CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
$ LDA, A( 1, N1+1 ), LDA, CBETA,
$ C( N1*N1+1 ), N1 )
*
END IF
*
ELSE
*
* N is odd, TRANSR = 'C', and UPLO = 'U'
*
IF( NOTRANS ) THEN
*
* N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
*
CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( N2*N2+1 ), N2 )
CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
$ BETA, C( N1*N2+1 ), N2 )
CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
$ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
*
ELSE
*
* N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
*
CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( N2*N2+1 ), N2 )
CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
$ BETA, C( N1*N2+1 ), N2 )
CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
$ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
*
END IF
*
END IF
*
END IF
*
ELSE
*
* N is even
*
IF( NORMALTRANSR ) THEN
*
* N is even and TRANSR = 'N'
*
IF( LOWER ) THEN
*
* N is even, TRANSR = 'N', and UPLO = 'L'
*
IF( NOTRANS ) THEN
*
* N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
*
CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( 2 ), N+1 )
CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
$ BETA, C( 1 ), N+1 )
CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
$ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
$ N+1 )
*
ELSE
*
* N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
*
CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( 2 ), N+1 )
CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
$ BETA, C( 1 ), N+1 )
CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
$ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
$ N+1 )
*
END IF
*
ELSE
*
* N is even, TRANSR = 'N', and UPLO = 'U'
*
IF( NOTRANS ) THEN
*
* N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
*
CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( NK+2 ), N+1 )
CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
$ BETA, C( NK+1 ), N+1 )
CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
$ LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
$ N+1 )
*
ELSE
*
* N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
*
CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( NK+2 ), N+1 )
CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
$ BETA, C( NK+1 ), N+1 )
CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
$ LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
$ N+1 )
*
END IF
*
END IF
*
ELSE
*
* N is even, and TRANSR = 'C'
*
IF( LOWER ) THEN
*
* N is even, TRANSR = 'C', and UPLO = 'L'
*
IF( NOTRANS ) THEN
*
* N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
*
CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( NK+1 ), NK )
CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
$ BETA, C( 1 ), NK )
CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
$ LDA, A( NK+1, 1 ), LDA, CBETA,
$ C( ( ( NK+1 )*NK )+1 ), NK )
*
ELSE
*
* N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
*
CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( NK+1 ), NK )
CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
$ BETA, C( 1 ), NK )
CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
$ LDA, A( 1, NK+1 ), LDA, CBETA,
$ C( ( ( NK+1 )*NK )+1 ), NK )
*
END IF
*
ELSE
*
* N is even, TRANSR = 'C', and UPLO = 'U'
*
IF( NOTRANS ) THEN
*
* N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
*
CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( NK*( NK+1 )+1 ), NK )
CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
$ BETA, C( NK*NK+1 ), NK )
CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
$ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
*
ELSE
*
* N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
*
CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
$ BETA, C( NK*( NK+1 )+1 ), NK )
CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
$ BETA, C( NK*NK+1 ), NK )
CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
$ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
*
END IF
*
END IF
*
END IF
*
END IF
*
RETURN
*
* End of ZHFRK
*
END