*> \brief \b ZLAQZ0 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZLAQZ0 + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, * $ LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, REC, * $ INFO ) * IMPLICIT NONE * * Arguments * CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ * INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, * $ REC * INTEGER, INTENT( OUT ) :: INFO * COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * $ * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * ) * DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLAQZ0 computes the eigenvalues of a real matrix pair (H,T), *> where H is an upper Hessenberg matrix and T is upper triangular, *> using the double-shift QZ method. *> Matrix pairs of this type are produced by the reduction to *> generalized upper Hessenberg form of a real matrix pair (A,B): *> *> A = Q1*H*Z1**H, B = Q1*T*Z1**H, *> *> as computed by ZGGHRD. *> *> If JOB='S', then the Hessenberg-triangular pair (H,T) is *> also reduced to generalized Schur form, *> *> H = Q*S*Z**H, T = Q*P*Z**H, *> *> where Q and Z are unitary matrices, P and S are an upper triangular *> matrices. *> *> Optionally, the unitary matrix Q from the generalized Schur *> factorization may be postmultiplied into an input matrix Q1, and the *> unitary matrix Z may be postmultiplied into an input matrix Z1. *> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced *> the matrix pair (A,B) to generalized upper Hessenberg form, then the *> output matrices Q1*Q and Z1*Z are the unitary factors from the *> generalized Schur factorization of (A,B): *> *> A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H. *> *> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, *> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is *> complex and beta real. *> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the *> generalized nonsymmetric eigenvalue problem (GNEP) *> A*x = lambda*B*x *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the *> alternate form of the GNEP *> mu*A*y = B*y. *> Eigenvalues can be read directly from the generalized Schur *> form: *> alpha = S(i,i), beta = P(i,i). *> *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix *> Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), *> pp. 241--256. *> *> Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ *> Algorithm with Aggressive Early Deflation", SIAM J. Numer. *> Anal., 29(2006), pp. 199--227. *> *> Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift, *> multipole rational QZ method with aggressive early deflation" *> \endverbatim * * Arguments: * ========== * *> \param[in] WANTS *> \verbatim *> WANTS is CHARACTER*1 *> = 'E': Compute eigenvalues only; *> = 'S': Compute eigenvalues and the Schur form. *> \endverbatim *> *> \param[in] WANTQ *> \verbatim *> WANTQ is CHARACTER*1 *> = 'N': Left Schur vectors (Q) are not computed; *> = 'I': Q is initialized to the unit matrix and the matrix Q *> of left Schur vectors of (A,B) is returned; *> = 'V': Q must contain an unitary matrix Q1 on entry and *> the product Q1*Q is returned. *> \endverbatim *> *> \param[in] WANTZ *> \verbatim *> WANTZ is CHARACTER*1 *> = 'N': Right Schur vectors (Z) are not computed; *> = 'I': Z is initialized to the unit matrix and the matrix Z *> of right Schur vectors of (A,B) is returned; *> = 'V': Z must contain an unitary matrix Z1 on entry and *> the product Z1*Z is returned. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A, B, Q, and Z. N >= 0. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI mark the rows and columns of A which are in *> Hessenberg form. It is assumed that A is already upper *> triangular in rows and columns 1:ILO-1 and IHI+1:N. *> If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> On entry, the N-by-N upper Hessenberg matrix A. *> On exit, if JOB = 'S', A contains the upper triangular *> matrix S from the generalized Schur factorization. *> If JOB = 'E', the diagonal blocks of A match those of S, but *> the rest of A is unspecified. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max( 1, N ). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB, N) *> On entry, the N-by-N upper triangular matrix B. *> On exit, if JOB = 'S', B contains the upper triangular *> matrix P from the generalized Schur factorization; *> If JOB = 'E', the diagonal blocks of B match those of P, but *> the rest of B is unspecified. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max( 1, N ). *> \endverbatim *> *> \param[out] ALPHA *> \verbatim *> ALPHA is COMPLEX*16 array, dimension (N) *> Each scalar alpha defining an eigenvalue *> of GNEP. *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is COMPLEX*16 array, dimension (N) *> The scalars beta that define the eigenvalues of GNEP. *> Together, the quantities alpha = ALPHA(j) and *> beta = BETA(j) represent the j-th eigenvalue of the matrix *> pair (A,B), in one of the forms lambda = alpha/beta or *> mu = beta/alpha. Since either lambda or mu may overflow, *> they should not, in general, be computed. *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is COMPLEX*16 array, dimension (LDQ, N) *> On entry, if COMPQ = 'V', the unitary matrix Q1 used in *> the reduction of (A,B) to generalized Hessenberg form. *> On exit, if COMPQ = 'I', the unitary matrix of left Schur *> vectors of (A,B), and if COMPQ = 'V', the unitary matrix *> of left Schur vectors of (A,B). *> Not referenced if COMPQ = 'N'. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= 1. *> If COMPQ='V' or 'I', then LDQ >= N. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDZ, N) *> On entry, if COMPZ = 'V', the unitary matrix Z1 used in *> the reduction of (A,B) to generalized Hessenberg form. *> On exit, if COMPZ = 'I', the unitary matrix of *> right Schur vectors of (H,T), and if COMPZ = 'V', the *> unitary matrix of right Schur vectors of (A,B). *> Not referenced if COMPZ = 'N'. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= 1. *> If COMPZ='V' or 'I', then LDZ >= N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,N). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[in] REC *> \verbatim *> REC is INTEGER *> REC indicates the current recursion level. Should be set *> to 0 on first call. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> = 1,...,N: the QZ iteration did not converge. (A,B) is not *> in Schur form, but ALPHA(i) and *> BETA(i), i=INFO+1,...,N should be correct. *> \endverbatim * * Authors: * ======== * *> \author Thijs Steel, KU Leuven * *> \date May 2020 * *> \ingroup complex16GEcomputational *> * ===================================================================== RECURSIVE SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, $ LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z, $ LDZ, WORK, LWORK, RWORK, REC, $ INFO ) IMPLICIT NONE * Arguments CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, $ REC INTEGER, INTENT( OUT ) :: INFO COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, $ * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * ) DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * ) * Parameters COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), CONE = ( 1.0D+0, $ 0.0D+0 ) ) DOUBLE PRECISION :: ZERO, ONE, HALF PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 ) * Local scalars DOUBLE PRECISION :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR, $ BNORM, BTOL COMPLEX*16 :: ESHIFT, S1, TEMP INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS, $ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED, $ NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM, $ ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO, $ NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST LOGICAL :: ILSCHUR, ILQ, ILZ CHARACTER :: JBCMPZ*3 * External Functions EXTERNAL :: XERBLA, ZHGEQZ, ZLAQZ2, ZLAQZ3, ZLASET, $ ZLARTG, ZROT DOUBLE PRECISION, EXTERNAL :: DLAMCH, ZLANHS LOGICAL, EXTERNAL :: LSAME INTEGER, EXTERNAL :: ILAENV * * Decode wantS,wantQ,wantZ * IF( LSAME( WANTS, 'E' ) ) THEN ILSCHUR = .FALSE. IWANTS = 1 ELSE IF( LSAME( WANTS, 'S' ) ) THEN ILSCHUR = .TRUE. IWANTS = 2 ELSE IWANTS = 0 END IF IF( LSAME( WANTQ, 'N' ) ) THEN ILQ = .FALSE. IWANTQ = 1 ELSE IF( LSAME( WANTQ, 'V' ) ) THEN ILQ = .TRUE. IWANTQ = 2 ELSE IF( LSAME( WANTQ, 'I' ) ) THEN ILQ = .TRUE. IWANTQ = 3 ELSE IWANTQ = 0 END IF IF( LSAME( WANTZ, 'N' ) ) THEN ILZ = .FALSE. IWANTZ = 1 ELSE IF( LSAME( WANTZ, 'V' ) ) THEN ILZ = .TRUE. IWANTZ = 2 ELSE IF( LSAME( WANTZ, 'I' ) ) THEN ILZ = .TRUE. IWANTZ = 3 ELSE IWANTZ = 0 END IF * * Check Argument Values * INFO = 0 IF( IWANTS.EQ.0 ) THEN INFO = -1 ELSE IF( IWANTQ.EQ.0 ) THEN INFO = -2 ELSE IF( IWANTZ.EQ.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( ILO.LT.1 ) THEN INFO = -5 ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN INFO = -6 ELSE IF( LDA.LT.N ) THEN INFO = -8 ELSE IF( LDB.LT.N ) THEN INFO = -10 ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN INFO = -15 ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN INFO = -17 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAQZ0', -INFO ) RETURN END IF * * Quick return if possible * IF( N.LE.0 ) THEN WORK( 1 ) = DBLE( 1 ) RETURN END IF * * Get the parameters * JBCMPZ( 1:1 ) = WANTS JBCMPZ( 2:2 ) = WANTQ JBCMPZ( 3:3 ) = WANTZ NMIN = ILAENV( 12, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) NWR = ILAENV( 13, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) NWR = MAX( 2, NWR ) NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR ) NIBBLE = ILAENV( 14, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) NSR = ILAENV( 15, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO ) NSR = MAX( 2, NSR-MOD( NSR, 2 ) ) RCOST = ILAENV( 17, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) ITEMP1 = INT( NSR/SQRT( 1+2*NSR/( DBLE( RCOST )/100*N ) ) ) ITEMP1 = ( ( ITEMP1-1 )/4 )*4+4 NBR = NSR+ITEMP1 IF( N .LT. NMIN .OR. REC .GE. 2 ) THEN CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB, $ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, $ INFO ) RETURN END IF * * Find out required workspace * * Workspace query to ZLAQZ2 NW = MAX( NWR, NMIN ) CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, LDB, $ Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, ALPHA, $ BETA, WORK, NW, WORK, NW, WORK, -1, RWORK, REC, $ AED_INFO ) ITEMP1 = INT( WORK( 1 ) ) * Workspace query to ZLAQZ3 CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSR, NBR, ALPHA, $ BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK, NBR, $ WORK, NBR, WORK, -1, SWEEP_INFO ) ITEMP2 = INT( WORK( 1 ) ) LWORKREQ = MAX( ITEMP1+2*NW**2, ITEMP2+2*NBR**2 ) IF ( LWORK .EQ.-1 ) THEN WORK( 1 ) = DBLE( LWORKREQ ) RETURN ELSE IF ( LWORK .LT. LWORKREQ ) THEN INFO = -19 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAQZ0', INFO ) RETURN END IF * * Initialize Q and Z * IF( IWANTQ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Q, $ LDQ ) IF( IWANTZ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Z, $ LDZ ) * Get machine constants SAFMIN = DLAMCH( 'SAFE MINIMUM' ) SAFMAX = ONE/SAFMIN ULP = DLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( DBLE( N )/ULP ) BNORM = ZLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, RWORK ) BTOL = MAX( SAFMIN, ULP*BNORM ) ISTART = ILO ISTOP = IHI MAXIT = 30*( IHI-ILO+1 ) LD = 0 DO IITER = 1, MAXIT IF( IITER .GE. MAXIT ) THEN INFO = ISTOP+1 GOTO 80 END IF IF ( ISTART+1 .GE. ISTOP ) THEN ISTOP = ISTART EXIT END IF * Check deflations at the end IF ( ABS( A( ISTOP, ISTOP-1 ) ) .LE. MAX( SMLNUM, $ ULP*( ABS( A( ISTOP, ISTOP ) )+ABS( A( ISTOP-1, $ ISTOP-1 ) ) ) ) ) THEN A( ISTOP, ISTOP-1 ) = CZERO ISTOP = ISTOP-1 LD = 0 ESHIFT = CZERO END IF * Check deflations at the start IF ( ABS( A( ISTART+1, ISTART ) ) .LE. MAX( SMLNUM, $ ULP*( ABS( A( ISTART, ISTART ) )+ABS( A( ISTART+1, $ ISTART+1 ) ) ) ) ) THEN A( ISTART+1, ISTART ) = CZERO ISTART = ISTART+1 LD = 0 ESHIFT = CZERO END IF IF ( ISTART+1 .GE. ISTOP ) THEN EXIT END IF * Check interior deflations ISTART2 = ISTART DO K = ISTOP, ISTART+1, -1 IF ( ABS( A( K, K-1 ) ) .LE. MAX( SMLNUM, ULP*( ABS( A( K, $ K ) )+ABS( A( K-1, K-1 ) ) ) ) ) THEN A( K, K-1 ) = CZERO ISTART2 = K EXIT END IF END DO * Get range to apply rotations to IF ( ILSCHUR ) THEN ISTARTM = 1 ISTOPM = N ELSE ISTARTM = ISTART2 ISTOPM = ISTOP END IF * Check infinite eigenvalues, this is done without blocking so might * slow down the method when many infinite eigenvalues are present K = ISTOP DO WHILE ( K.GE.ISTART2 ) IF( ABS( B( K, K ) ) .LT. BTOL ) THEN * A diagonal element of B is negligible, move it * to the top and deflate it DO K2 = K, ISTART2+1, -1 CALL ZLARTG( B( K2-1, K2 ), B( K2-1, K2-1 ), C1, S1, $ TEMP ) B( K2-1, K2 ) = TEMP B( K2-1, K2-1 ) = CZERO CALL ZROT( K2-2-ISTARTM+1, B( ISTARTM, K2 ), 1, $ B( ISTARTM, K2-1 ), 1, C1, S1 ) CALL ZROT( MIN( K2+1, ISTOP )-ISTARTM+1, A( ISTARTM, $ K2 ), 1, A( ISTARTM, K2-1 ), 1, C1, S1 ) IF ( ILZ ) THEN CALL ZROT( N, Z( 1, K2 ), 1, Z( 1, K2-1 ), 1, C1, $ S1 ) END IF IF( K2.LT.ISTOP ) THEN CALL ZLARTG( A( K2, K2-1 ), A( K2+1, K2-1 ), C1, $ S1, TEMP ) A( K2, K2-1 ) = TEMP A( K2+1, K2-1 ) = CZERO CALL ZROT( ISTOPM-K2+1, A( K2, K2 ), LDA, A( K2+1, $ K2 ), LDA, C1, S1 ) CALL ZROT( ISTOPM-K2+1, B( K2, K2 ), LDB, B( K2+1, $ K2 ), LDB, C1, S1 ) IF( ILQ ) THEN CALL ZROT( N, Q( 1, K2 ), 1, Q( 1, K2+1 ), 1, $ C1, DCONJG( S1 ) ) END IF END IF END DO IF( ISTART2.LT.ISTOP )THEN CALL ZLARTG( A( ISTART2, ISTART2 ), A( ISTART2+1, $ ISTART2 ), C1, S1, TEMP ) A( ISTART2, ISTART2 ) = TEMP A( ISTART2+1, ISTART2 ) = CZERO CALL ZROT( ISTOPM-( ISTART2+1 )+1, A( ISTART2, $ ISTART2+1 ), LDA, A( ISTART2+1, $ ISTART2+1 ), LDA, C1, S1 ) CALL ZROT( ISTOPM-( ISTART2+1 )+1, B( ISTART2, $ ISTART2+1 ), LDB, B( ISTART2+1, $ ISTART2+1 ), LDB, C1, S1 ) IF( ILQ ) THEN CALL ZROT( N, Q( 1, ISTART2 ), 1, Q( 1, $ ISTART2+1 ), 1, C1, DCONJG( S1 ) ) END IF END IF ISTART2 = ISTART2+1 END IF K = K-1 END DO * istart2 now points to the top of the bottom right * unreduced Hessenberg block IF ( ISTART2 .GE. ISTOP ) THEN ISTOP = ISTART2-1 LD = 0 ESHIFT = CZERO CYCLE END IF NW = NWR NSHIFTS = NSR NBLOCK = NBR IF ( ISTOP-ISTART2+1 .LT. NMIN ) THEN * Setting nw to the size of the subblock will make AED deflate * all the eigenvalues. This is slightly more efficient than just * using qz_small because the off diagonal part gets updated via BLAS. IF ( ISTOP-ISTART+1 .LT. NMIN ) THEN NW = ISTOP-ISTART+1 ISTART2 = ISTART ELSE NW = ISTOP-ISTART2+1 END IF END IF * * Time for AED * CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NW, A, LDA, $ B, LDB, Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, $ ALPHA, BETA, WORK, NW, WORK( NW**2+1 ), NW, $ WORK( 2*NW**2+1 ), LWORK-2*NW**2, RWORK, REC, $ AED_INFO ) IF ( N_DEFLATED > 0 ) THEN ISTOP = ISTOP-N_DEFLATED LD = 0 ESHIFT = CZERO END IF IF ( 100*N_DEFLATED > NIBBLE*( N_DEFLATED+N_UNDEFLATED ) .OR. $ ISTOP-ISTART2+1 .LT. NMIN ) THEN * AED has uncovered many eigenvalues. Skip a QZ sweep and run * AED again. CYCLE END IF LD = LD+1 NS = MIN( NSHIFTS, ISTOP-ISTART2 ) NS = MIN( NS, N_UNDEFLATED ) SHIFTPOS = ISTOP-N_UNDEFLATED+1 IF ( MOD( LD, 6 ) .EQ. 0 ) THEN * * Exceptional shift. Chosen for no particularly good reason. * IF( ( DBLE( MAXIT )*SAFMIN )*ABS( A( ISTOP, $ ISTOP-1 ) ).LT.ABS( A( ISTOP-1, ISTOP-1 ) ) ) THEN ESHIFT = A( ISTOP, ISTOP-1 )/B( ISTOP-1, ISTOP-1 ) ELSE ESHIFT = ESHIFT+CONE/( SAFMIN*DBLE( MAXIT ) ) END IF ALPHA( SHIFTPOS ) = CONE BETA( SHIFTPOS ) = ESHIFT NS = 1 END IF * * Time for a QZ sweep * CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NS, NBLOCK, $ ALPHA( SHIFTPOS ), BETA( SHIFTPOS ), A, LDA, B, $ LDB, Q, LDQ, Z, LDZ, WORK, NBLOCK, WORK( NBLOCK** $ 2+1 ), NBLOCK, WORK( 2*NBLOCK**2+1 ), $ LWORK-2*NBLOCK**2, SWEEP_INFO ) END DO * * Call ZHGEQZ to normalize the eigenvalue blocks and set the eigenvalues * If all the eigenvalues have been found, ZHGEQZ will not do any iterations * and only normalize the blocks. In case of a rare convergence failure, * the single shift might perform better. * 80 CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB, $ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, $ NORM_INFO ) INFO = NORM_INFO END SUBROUTINE