*> \brief \b ZLAUU2 computes the product UUH or LHL, where U and L are upper or lower triangular matrices (unblocked algorithm).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAUU2 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLAUU2( UPLO, N, A, LDA, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLAUU2 computes the product U * U**H or L**H * L, where the triangular
*> factor U or L is stored in the upper or lower triangular part of
*> the array A.
*>
*> If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
*> overwriting the factor U in A.
*> If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
*> overwriting the factor L in A.
*>
*> This is the unblocked form of the algorithm, calling Level 2 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the triangular factor stored in the array A
*> is upper or lower triangular:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the triangular factor U or L. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the triangular factor U or L.
*> On exit, if UPLO = 'U', the upper triangle of A is
*> overwritten with the upper triangle of the product U * U**H;
*> if UPLO = 'L', the lower triangle of A is overwritten with
*> the lower triangle of the product L**H * L.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZLAUU2( UPLO, N, A, LDA, INFO )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I
DOUBLE PRECISION AII
* ..
* .. External Functions ..
LOGICAL LSAME
COMPLEX*16 ZDOTC
EXTERNAL LSAME, ZDOTC
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDSCAL, ZGEMV, ZLACGV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLAUU2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Compute the product U * U**H.
*
DO 10 I = 1, N
AII = DBLE( A( I, I ) )
IF( I.LT.N ) THEN
A( I, I ) = AII*AII + DBLE( ZDOTC( N-I, A( I, I+1 ), LDA,
$ A( I, I+1 ), LDA ) )
CALL ZLACGV( N-I, A( I, I+1 ), LDA )
CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
$ LDA, A( I, I+1 ), LDA, DCMPLX( AII ),
$ A( 1, I ), 1 )
CALL ZLACGV( N-I, A( I, I+1 ), LDA )
ELSE
CALL ZDSCAL( I, AII, A( 1, I ), 1 )
END IF
10 CONTINUE
*
ELSE
*
* Compute the product L**H * L.
*
DO 20 I = 1, N
AII = DBLE( A( I, I ) )
IF( I.LT.N ) THEN
A( I, I ) = AII*AII + DBLE( ZDOTC( N-I, A( I+1, I ), 1,
$ A( I+1, I ), 1 ) )
CALL ZLACGV( I-1, A( I, 1 ), LDA )
CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
$ A( I+1, 1 ), LDA, A( I+1, I ), 1,
$ DCMPLX( AII ), A( I, 1 ), LDA )
CALL ZLACGV( I-1, A( I, 1 ), LDA )
ELSE
CALL ZDSCAL( I, AII, A( I, 1 ), LDA )
END IF
20 CONTINUE
END IF
*
RETURN
*
* End of ZLAUU2
*
END