*> \brief \b DLATB9 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, * ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, * DISTA, DISTB ) * * .. Scalar Arguments .. * CHARACTER DISTA, DISTB, TYPE * CHARACTER*3 PATH * INTEGER IMAT, KLA, KLB, KUA, KUB, M, MODEA, MODEB, N, P * DOUBLE PRECISION ANORM, BNORM, CNDNMA, CNDNMB * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLATB9 sets parameters for the matrix generator based on the type of *> matrix to be generated. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name. *> \endverbatim *> *> \param[in] IMAT *> \verbatim *> IMAT is INTEGER *> An integer key describing which matrix to generate for this *> path. *> = 1: A: diagonal, B: upper triangular *> = 2: A: upper triangular, B: upper triangular *> = 3: A: lower triangular, B: upper triangular *> Else: A: general dense, B: general dense *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows in the matrix to be generated. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns in the matrix to be generated. *> \endverbatim *> *> \param[out] TYPE *> \verbatim *> TYPE is CHARACTER*1 *> The type of the matrix to be generated: *> = 'S': symmetric matrix; *> = 'P': symmetric positive (semi)definite matrix; *> = 'N': nonsymmetric matrix. *> \endverbatim *> *> \param[out] KLA *> \verbatim *> KLA is INTEGER *> The lower band width of the matrix to be generated. *> \endverbatim *> *> \param[out] KUA *> \verbatim *> KUA is INTEGER *> The upper band width of the matrix to be generated. *> \endverbatim *> *> \param[out] KLB *> \verbatim *> KLB is INTEGER *> The lower band width of the matrix to be generated. *> \endverbatim *> *> \param[out] KUB *> \verbatim *> KUA is INTEGER *> The upper band width of the matrix to be generated. *> \endverbatim *> *> \param[out] ANORM *> \verbatim *> ANORM is DOUBLE PRECISION *> The desired norm of the matrix to be generated. The diagonal *> matrix of singular values or eigenvalues is scaled by this *> value. *> \endverbatim *> *> \param[out] BNORM *> \verbatim *> BNORM is DOUBLE PRECISION *> The desired norm of the matrix to be generated. The diagonal *> matrix of singular values or eigenvalues is scaled by this *> value. *> \endverbatim *> *> \param[out] MODEA *> \verbatim *> MODEA is INTEGER *> A key indicating how to choose the vector of eigenvalues. *> \endverbatim *> *> \param[out] MODEB *> \verbatim *> MODEB is INTEGER *> A key indicating how to choose the vector of eigenvalues. *> \endverbatim *> *> \param[out] CNDNMA *> \verbatim *> CNDNMA is DOUBLE PRECISION *> The desired condition number. *> \endverbatim *> *> \param[out] CNDNMB *> \verbatim *> CNDNMB is DOUBLE PRECISION *> The desired condition number. *> \endverbatim *> *> \param[out] DISTA *> \verbatim *> DISTA is CHARACTER*1 *> The type of distribution to be used by the random number *> generator. *> \endverbatim *> *> \param[out] DISTB *> \verbatim *> DISTB is CHARACTER*1 *> The type of distribution to be used by the random number *> generator. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, $ ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, $ DISTA, DISTB ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER DISTA, DISTB, TYPE CHARACTER*3 PATH INTEGER IMAT, KLA, KLB, KUA, KUB, M, MODEA, MODEB, N, P DOUBLE PRECISION ANORM, BNORM, CNDNMA, CNDNMB * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION SHRINK, TENTH PARAMETER ( SHRINK = 0.25D0, TENTH = 0.1D+0 ) DOUBLE PRECISION ONE, TEN PARAMETER ( ONE = 1.0D+0, TEN = 1.0D+1 ) * .. * .. Local Scalars .. LOGICAL FIRST DOUBLE PRECISION BADC1, BADC2, EPS, LARGE, SMALL * .. * .. External Functions .. LOGICAL LSAMEN DOUBLE PRECISION DLAMCH EXTERNAL LSAMEN, DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Save statement .. SAVE EPS, SMALL, LARGE, BADC1, BADC2, FIRST * .. * .. Data statements .. DATA FIRST / .TRUE. / * .. * .. Executable Statements .. * * Set some constants for use in the subroutine. * IF( FIRST ) THEN FIRST = .FALSE. EPS = DLAMCH( 'Precision' ) BADC2 = TENTH / EPS BADC1 = SQRT( BADC2 ) SMALL = DLAMCH( 'Safe minimum' ) LARGE = ONE / SMALL SMALL = SHRINK*( SMALL / EPS ) LARGE = ONE / SMALL END IF * * Set some parameters we don't plan to change. * TYPE = 'N' DISTA = 'S' DISTB = 'S' MODEA = 3 MODEB = 4 * * Set the lower and upper bandwidths. * IF( LSAMEN( 3, PATH, 'GRQ' ) .OR. LSAMEN( 3, PATH, 'LSE' ) .OR. $ LSAMEN( 3, PATH, 'GSV' ) ) THEN * * A: M by N, B: P by N * IF( IMAT.EQ.1 ) THEN * * A: diagonal, B: upper triangular * KLA = 0 KUA = 0 KLB = 0 KUB = MAX( N-1, 0 ) * ELSE IF( IMAT.EQ.2 ) THEN * * A: upper triangular, B: upper triangular * KLA = 0 KUA = MAX( N-1, 0 ) KLB = 0 KUB = MAX( N-1, 0 ) * ELSE IF( IMAT.EQ.3 ) THEN * * A: lower triangular, B: upper triangular * KLA = MAX( M-1, 0 ) KUA = 0 KLB = 0 KUB = MAX( N-1, 0 ) * ELSE * * A: general dense, B: general dense * KLA = MAX( M-1, 0 ) KUA = MAX( N-1, 0 ) KLB = MAX( P-1, 0 ) KUB = MAX( N-1, 0 ) * END IF * ELSE IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GLM' ) ) $ THEN * * A: N by M, B: N by P * IF( IMAT.EQ.1 ) THEN * * A: diagonal, B: lower triangular * KLA = 0 KUA = 0 KLB = MAX( N-1, 0 ) KUB = 0 ELSE IF( IMAT.EQ.2 ) THEN * * A: lower triangular, B: diagonal * KLA = MAX( N-1, 0 ) KUA = 0 KLB = 0 KUB = 0 * ELSE IF( IMAT.EQ.3 ) THEN * * A: lower triangular, B: upper triangular * KLA = MAX( N-1, 0 ) KUA = 0 KLB = 0 KUB = MAX( P-1, 0 ) * ELSE * * A: general dense, B: general dense * KLA = MAX( N-1, 0 ) KUA = MAX( M-1, 0 ) KLB = MAX( N-1, 0 ) KUB = MAX( P-1, 0 ) END IF * END IF * * Set the condition number and norm. * CNDNMA = TEN*TEN CNDNMB = TEN IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) .OR. $ LSAMEN( 3, PATH, 'GSV' ) ) THEN IF( IMAT.EQ.5 ) THEN CNDNMA = BADC1 CNDNMB = BADC1 ELSE IF( IMAT.EQ.6 ) THEN CNDNMA = BADC2 CNDNMB = BADC2 ELSE IF( IMAT.EQ.7 ) THEN CNDNMA = BADC1 CNDNMB = BADC2 ELSE IF( IMAT.EQ.8 ) THEN CNDNMA = BADC2 CNDNMB = BADC1 END IF END IF * ANORM = TEN BNORM = TEN*TEN*TEN IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) ) THEN IF( IMAT.EQ.7 ) THEN ANORM = SMALL BNORM = LARGE ELSE IF( IMAT.EQ.8 ) THEN ANORM = LARGE BNORM = SMALL END IF END IF * IF( N.LE.1 ) THEN CNDNMA = ONE CNDNMB = ONE END IF * RETURN * * End of DLATB9 * END