*> \brief \b SCHKHS * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, WR1, * WI1, WR2, WI2, WR3, WI3, EVECTL, EVECTR, EVECTY, * EVECTX, UU, TAU, WORK, NWORK, IWORK, SELECT, * RESULT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ), SELECT( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * REAL A( LDA, * ), EVECTL( LDU, * ), * $ EVECTR( LDU, * ), EVECTX( LDU, * ), * $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ), * $ T1( LDA, * ), T2( LDA, * ), TAU( * ), * $ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ), * $ WI1( * ), WI2( * ), WI3( * ), WORK( * ), * $ WR1( * ), WR2( * ), WR3( * ), Z( LDU, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SCHKHS checks the nonsymmetric eigenvalue problem routines. *> *> SGEHRD factors A as U H U' , where ' means transpose, *> H is hessenberg, and U is an orthogonal matrix. *> *> SORGHR generates the orthogonal matrix U. *> *> SORMHR multiplies a matrix by the orthogonal matrix U. *> *> SHSEQR factors H as Z T Z' , where Z is orthogonal and *> T is "quasi-triangular", and the eigenvalue vector W. *> *> STREVC computes the left and right eigenvector matrices *> L and R for T. *> *> SHSEIN computes the left and right eigenvector matrices *> Y and X for H, using inverse iteration. *> *> STREVC3 computes left and right eigenvector matrices *> from a Schur matrix T and backtransforms them with Z *> to eigenvector matrices L and R for A. L and R are *> GE matrices. *> *> When SCHKHS is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix will be generated and used *> to test the nonsymmetric eigenroutines. For each matrix, 16 *> tests will be performed: *> *> (1) | A - U H U**T | / ( |A| n ulp ) *> *> (2) | I - UU**T | / ( n ulp ) *> *> (3) | H - Z T Z**T | / ( |H| n ulp ) *> *> (4) | I - ZZ**T | / ( n ulp ) *> *> (5) | A - UZ H (UZ)**T | / ( |A| n ulp ) *> *> (6) | I - UZ (UZ)**T | / ( n ulp ) *> *> (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp ) *> *> (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp ) *> *> (9) | TR - RW | / ( |T| |R| ulp ) *> *> (10) | L**H T - W**H L | / ( |T| |L| ulp ) *> *> (11) | HX - XW | / ( |H| |X| ulp ) *> *> (12) | Y**H H - W**H Y | / ( |H| |Y| ulp ) *> *> (13) | AX - XW | / ( |A| |X| ulp ) *> *> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) *> *> (15) | AR - RW | / ( |A| |R| ulp ) *> *> (16) | LA - WL | / ( |A| |L| ulp ) *> *> The "sizes" are specified by an array NN(1:NSIZES); the value of *> each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> (3) A (transposed) Jordan block, with 1's on the diagonal. *> *> (4) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (5) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random signs. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random signs. *> *> (7) Same as (4), but multiplied by SQRT( overflow threshold ) *> (8) Same as (4), but multiplied by SQRT( underflow threshold ) *> *> (9) A matrix of the form U' T U, where U is orthogonal and *> T has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal and random O(1) entries in the upper *> triangle. *> *> (10) A matrix of the form U' T U, where U is orthogonal and *> T has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal and random O(1) entries in the upper *> triangle. *> *> (11) A matrix of the form U' T U, where U is orthogonal and *> T has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal and random O(1) entries in the upper *> triangle. *> *> (12) A matrix of the form U' T U, where U is orthogonal and *> T has real or complex conjugate paired eigenvalues randomly *> chosen from ( ULP, 1 ) and random O(1) entries in the upper *> triangle. *> *> (13) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP *> with random signs on the diagonal and random O(1) entries *> in the upper triangle. *> *> (14) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has geometrically spaced entries *> 1, ..., ULP with random signs on the diagonal and random *> O(1) entries in the upper triangle. *> *> (15) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP *> with random signs on the diagonal and random O(1) entries *> in the upper triangle. *> *> (16) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has real or complex conjugate paired *> eigenvalues randomly chosen from ( ULP, 1 ) and random *> O(1) entries in the upper triangle. *> *> (17) Same as (16), but multiplied by SQRT( overflow threshold ) *> (18) Same as (16), but multiplied by SQRT( underflow threshold ) *> *> (19) Nonsymmetric matrix with random entries chosen from (-1,1). *> (20) Same as (19), but multiplied by SQRT( overflow threshold ) *> (21) Same as (19), but multiplied by SQRT( underflow threshold ) *> \endverbatim * * Arguments: * ========== * *> \verbatim *> NSIZES - INTEGER *> The number of sizes of matrices to use. If it is zero, *> SCHKHS does nothing. It must be at least zero. *> Not modified. *> *> NN - INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> Not modified. *> *> NTYPES - INTEGER *> The number of elements in DOTYPE. If it is zero, SCHKHS *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> Not modified. *> *> DOTYPE - LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> Not modified. *> *> ISEED - INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to SCHKHS to continue the same random number *> sequence. *> Modified. *> *> THRESH - REAL *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> Not modified. *> *> NOUNIT - INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> Not modified. *> *> A - REAL array, dimension (LDA,max(NN)) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually *> used. *> Modified. *> *> LDA - INTEGER *> The leading dimension of A, H, T1 and T2. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> H - REAL array, dimension (LDA,max(NN)) *> The upper hessenberg matrix computed by SGEHRD. On exit, *> H contains the Hessenberg form of the matrix in A. *> Modified. *> *> T1 - REAL array, dimension (LDA,max(NN)) *> The Schur (="quasi-triangular") matrix computed by SHSEQR *> if Z is computed. On exit, T1 contains the Schur form of *> the matrix in A. *> Modified. *> *> T2 - REAL array, dimension (LDA,max(NN)) *> The Schur matrix computed by SHSEQR when Z is not computed. *> This should be identical to T1. *> Modified. *> *> LDU - INTEGER *> The leading dimension of U, Z, UZ and UU. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> U - REAL array, dimension (LDU,max(NN)) *> The orthogonal matrix computed by SGEHRD. *> Modified. *> *> Z - REAL array, dimension (LDU,max(NN)) *> The orthogonal matrix computed by SHSEQR. *> Modified. *> *> UZ - REAL array, dimension (LDU,max(NN)) *> The product of U times Z. *> Modified. *> *> WR1 - REAL array, dimension (max(NN)) *> WI1 - REAL array, dimension (max(NN)) *> The real and imaginary parts of the eigenvalues of A, *> as computed when Z is computed. *> On exit, WR1 + WI1*i are the eigenvalues of the matrix in A. *> Modified. *> *> WR2 - REAL array, dimension (max(NN)) *> WI2 - REAL array, dimension (max(NN)) *> The real and imaginary parts of the eigenvalues of A, *> as computed when T is computed but not Z. *> On exit, WR2 + WI2*i are the eigenvalues of the matrix in A. *> Modified. *> *> WR3 - REAL array, dimension (max(NN)) *> WI3 - REAL array, dimension (max(NN)) *> Like WR1, WI1, these arrays contain the eigenvalues of A, *> but those computed when SHSEQR only computes the *> eigenvalues, i.e., not the Schur vectors and no more of the *> Schur form than is necessary for computing the *> eigenvalues. *> Modified. *> *> EVECTL - REAL array, dimension (LDU,max(NN)) *> The (upper triangular) left eigenvector matrix for the *> matrix in T1. For complex conjugate pairs, the real part *> is stored in one row and the imaginary part in the next. *> Modified. *> *> EVECTR - REAL array, dimension (LDU,max(NN)) *> The (upper triangular) right eigenvector matrix for the *> matrix in T1. For complex conjugate pairs, the real part *> is stored in one column and the imaginary part in the next. *> Modified. *> *> EVECTY - REAL array, dimension (LDU,max(NN)) *> The left eigenvector matrix for the *> matrix in H. For complex conjugate pairs, the real part *> is stored in one row and the imaginary part in the next. *> Modified. *> *> EVECTX - REAL array, dimension (LDU,max(NN)) *> The right eigenvector matrix for the *> matrix in H. For complex conjugate pairs, the real part *> is stored in one column and the imaginary part in the next. *> Modified. *> *> UU - REAL array, dimension (LDU,max(NN)) *> Details of the orthogonal matrix computed by SGEHRD. *> Modified. *> *> TAU - REAL array, dimension(max(NN)) *> Further details of the orthogonal matrix computed by SGEHRD. *> Modified. *> *> WORK - REAL array, dimension (NWORK) *> Workspace. *> Modified. *> *> NWORK - INTEGER *> The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2. *> *> IWORK - INTEGER array, dimension (max(NN)) *> Workspace. *> Modified. *> *> SELECT - LOGICAL array, dimension (max(NN)) *> Workspace. *> Modified. *> *> RESULT - REAL array, dimension (16) *> The values computed by the fourteen tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> Modified. *> *> INFO - INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some NN(j) < 0 *> -3: NTYPES < 0 *> -6: THRESH < 0 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). *> -14: LDU < 1 or LDU < NMAX. *> -28: NWORK too small. *> If SLATMR, SLATMS, or SLATME returns an error code, the *> absolute value of it is returned. *> If 1, then SHSEQR could not find all the shifts. *> If 2, then the EISPACK code (for small blocks) failed. *> If >2, then 30*N iterations were not enough to find an *> eigenvalue or to decompose the problem. *> Modified. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> MTEST The number of tests defined: care must be taken *> that (1) the size of RESULT, (2) the number of *> tests actually performed, and (3) MTEST agree. *> NTEST The number of tests performed on this matrix *> so far. This should be less than MTEST, and *> equal to it by the last test. It will be less *> if any of the routines being tested indicates *> that it could not compute the matrices that *> would be tested. *> NMAX Largest value in NN. *> NMATS The number of matrices generated so far. *> NERRS The number of tests which have exceeded THRESH *> so far (computed by SLAFTS). *> COND, CONDS, *> IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTOVFL, RTUNFL, *> RTULP, RTULPI Square roots of the previous 4 values. *> *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> KCONDS(j) Selects whether CONDS is to be 1 or *> 1/sqrt(ulp). (0 means irrelevant.) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, WR1, $ WI1, WR2, WI2, WR3, WI3, EVECTL, EVECTR, $ EVECTY, EVECTX, UU, TAU, WORK, NWORK, IWORK, $ SELECT, RESULT, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ), SELECT( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) REAL A( LDA, * ), EVECTL( LDU, * ), $ EVECTR( LDU, * ), EVECTX( LDU, * ), $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ), $ T1( LDA, * ), T2( LDA, * ), TAU( * ), $ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ), $ WI1( * ), WI2( * ), WI3( * ), WORK( * ), $ WR1( * ), WR2( * ), WR3( * ), Z( LDU, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) * .. * .. Local Scalars .. LOGICAL BADNN, MATCH INTEGER I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL, $ JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS, $ NMATS, NMAX, NSELC, NSELR, NTEST, NTESTT REAL ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP, $ RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL * .. * .. Local Arrays .. CHARACTER ADUMMA( 1 ) INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) REAL DUMMA( 6 ) * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL SCOPY, SGEHRD, SGEMM, SGET10, SGET22, SHSEIN, $ SHSEQR, SHST01, SLACPY, SLAFTS, SLASET, SLASUM, $ SLATME, SLATMR, SLATMS, SORGHR, SORMHR, STREVC, $ STREVC3, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 / DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2, $ 3, 1, 2, 3 / DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3, $ 1, 5, 5, 5, 4, 3, 1 / DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 / * .. * .. Executable Statements .. * * Check for errors * NTESTT = 0 INFO = 0 * BADNN = .FALSE. NMAX = 0 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -6 ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN INFO = -14 ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN INFO = -28 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SCHKHS', -INFO ) RETURN END IF * * Quick return if possible * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More important constants * UNFL = SLAMCH( 'Safe minimum' ) OVFL = SLAMCH( 'Overflow' ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) ULPINV = ONE / ULP RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) RTULP = SQRT( ULP ) RTULPI = ONE / RTULP * * Loop over sizes, types * NERRS = 0 NMATS = 0 * DO 270 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( N.EQ.0 ) $ GO TO 270 N1 = MAX( 1, N ) ANINV = ONE / REAL( N1 ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 260 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 260 NMATS = NMATS + 1 NTEST = 0 * * Save ISEED in case of an error. * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * * Initialize RESULT * DO 30 J = 1, 16 RESULT( J ) = ZERO 30 CONTINUE * * Compute "A" * * Control parameters: * * KMAGN KCONDS KMODE KTYPE * =1 O(1) 1 clustered 1 zero * =2 large large clustered 2 identity * =3 small exponential Jordan * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log symmetric, w/ eigenvalues * =6 random general, w/ eigenvalues * =7 random diagonal * =8 random symmetric * =9 random general * =10 random triangular * IF( MTYPES.GT.MAXTYP ) $ GO TO 100 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*ANINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*N*ULPINV GO TO 70 * 70 CONTINUE * CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) IINFO = 0 COND = ULPINV * * Special Matrices * IF( ITYPE.EQ.1 ) THEN * * Zero * IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * Jordan Block * DO 90 JCOL = 1, N A( JCOL, JCOL ) = ANORM IF( JCOL.GT.1 ) $ A( JCOL, JCOL-1 ) = ONE 90 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Symmetric, eigenvalues specified * CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.6 ) THEN * * General, eigenvalues specified * IF( KCONDS( JTYPE ).EQ.1 ) THEN CONDS = ONE ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN CONDS = RTULPI ELSE CONDS = ZERO END IF * ADUMMA( 1 ) = ' ' CALL SLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE, $ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4, $ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Symmetric, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * General, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.10 ) THEN * * Triangular, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 100 CONTINUE * * Call SGEHRD to compute H and U, do tests. * CALL SLACPY( ' ', N, N, A, LDA, H, LDA ) * NTEST = 1 * ILO = 1 IHI = N * CALL SGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ), $ NWORK-N, IINFO ) * IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUNIT, FMT = 9999 )'SGEHRD', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * DO 120 J = 1, N - 1 UU( J+1, J ) = ZERO DO 110 I = J + 2, N U( I, J ) = H( I, J ) UU( I, J ) = H( I, J ) H( I, J ) = ZERO 110 CONTINUE 120 CONTINUE CALL SCOPY( N-1, WORK, 1, TAU, 1 ) CALL SORGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ), $ NWORK-N, IINFO ) NTEST = 2 * CALL SHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK, $ NWORK, RESULT( 1 ) ) * * Call SHSEQR to compute T1, T2 and Z, do tests. * * Eigenvalues only (WR3,WI3) * CALL SLACPY( ' ', N, N, H, LDA, T2, LDA ) NTEST = 3 RESULT( 3 ) = ULPINV * CALL SHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, WR3, WI3, UZ, $ LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SHSEQR(E)', IINFO, N, JTYPE, $ IOLDSD IF( IINFO.LE.N+2 ) THEN INFO = ABS( IINFO ) GO TO 250 END IF END IF * * Eigenvalues (WR2,WI2) and Full Schur Form (T2) * CALL SLACPY( ' ', N, N, H, LDA, T2, LDA ) * CALL SHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, WR2, WI2, UZ, $ LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN WRITE( NOUNIT, FMT = 9999 )'SHSEQR(S)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Eigenvalues (WR1,WI1), Schur Form (T1), and Schur vectors * (UZ) * CALL SLACPY( ' ', N, N, H, LDA, T1, LDA ) CALL SLACPY( ' ', N, N, U, LDU, UZ, LDU ) * CALL SHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, WR1, WI1, UZ, $ LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN WRITE( NOUNIT, FMT = 9999 )'SHSEQR(V)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Compute Z = U' UZ * CALL SGEMM( 'T', 'N', N, N, N, ONE, U, LDU, UZ, LDU, ZERO, $ Z, LDU ) NTEST = 8 * * Do Tests 3: | H - Z T Z' | / ( |H| n ulp ) * and 4: | I - Z Z' | / ( n ulp ) * CALL SHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK, $ NWORK, RESULT( 3 ) ) * * Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp ) * and 6: | I - UZ (UZ)' | / ( n ulp ) * CALL SHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK, $ NWORK, RESULT( 5 ) ) * * Do Test 7: | T2 - T1 | / ( |T| n ulp ) * CALL SGET10( N, N, T2, LDA, T1, LDA, WORK, RESULT( 7 ) ) * * Do Test 8: | W2 - W1 | / ( max(|W1|,|W2|) ulp ) * TEMP1 = ZERO TEMP2 = ZERO DO 130 J = 1, N TEMP1 = MAX( TEMP1, ABS( WR1( J ) )+ABS( WI1( J ) ), $ ABS( WR2( J ) )+ABS( WI2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WR1( J )-WR2( J ) )+ $ ABS( WI1( J )-WI2( J ) ) ) 130 CONTINUE * RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) ) * * Compute the Left and Right Eigenvectors of T * * Compute the Right eigenvector Matrix: * NTEST = 9 RESULT( 9 ) = ULPINV * * Select last max(N/4,1) real, max(N/4,1) complex eigenvectors * NSELC = 0 NSELR = 0 J = N 140 CONTINUE IF( WI1( J ).EQ.ZERO ) THEN IF( NSELR.LT.MAX( N / 4, 1 ) ) THEN NSELR = NSELR + 1 SELECT( J ) = .TRUE. ELSE SELECT( J ) = .FALSE. END IF J = J - 1 ELSE IF( NSELC.LT.MAX( N / 4, 1 ) ) THEN NSELC = NSELC + 1 SELECT( J ) = .TRUE. SELECT( J-1 ) = .FALSE. ELSE SELECT( J ) = .FALSE. SELECT( J-1 ) = .FALSE. END IF J = J - 2 END IF IF( J.GT.0 ) $ GO TO 140 * CALL STREVC( 'Right', 'All', SELECT, N, T1, LDA, DUMMA, LDU, $ EVECTR, LDU, N, IN, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'STREVC(R,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Test 9: | TR - RW | / ( |T| |R| ulp ) * CALL SGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, WR1, $ WI1, WORK, DUMMA( 1 ) ) RESULT( 9 ) = DUMMA( 1 ) IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'STREVC', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF * * Compute selected right eigenvectors and confirm that * they agree with previous right eigenvectors * CALL STREVC( 'Right', 'Some', SELECT, N, T1, LDA, DUMMA, $ LDU, EVECTL, LDU, N, IN, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'STREVC(R,S)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * K = 1 MATCH = .TRUE. DO 170 J = 1, N IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN DO 150 JJ = 1, N IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN MATCH = .FALSE. GO TO 180 END IF 150 CONTINUE K = K + 1 ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN DO 160 JJ = 1, N IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) .OR. $ EVECTR( JJ, J+1 ).NE.EVECTL( JJ, K+1 ) ) THEN MATCH = .FALSE. GO TO 180 END IF 160 CONTINUE K = K + 2 END IF 170 CONTINUE 180 CONTINUE IF( .NOT.MATCH ) $ WRITE( NOUNIT, FMT = 9997 )'Right', 'STREVC', N, JTYPE, $ IOLDSD * * Compute the Left eigenvector Matrix: * NTEST = 10 RESULT( 10 ) = ULPINV CALL STREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU, $ DUMMA, LDU, N, IN, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'STREVC(L,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Test 10: | LT - WL | / ( |T| |L| ulp ) * CALL SGET22( 'Trans', 'N', 'Conj', N, T1, LDA, EVECTL, LDU, $ WR1, WI1, WORK, DUMMA( 3 ) ) RESULT( 10 ) = DUMMA( 3 ) IF( DUMMA( 4 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'STREVC', DUMMA( 4 ), $ N, JTYPE, IOLDSD END IF * * Compute selected left eigenvectors and confirm that * they agree with previous left eigenvectors * CALL STREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR, $ LDU, DUMMA, LDU, N, IN, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'STREVC(L,S)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * K = 1 MATCH = .TRUE. DO 210 J = 1, N IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN DO 190 JJ = 1, N IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN MATCH = .FALSE. GO TO 220 END IF 190 CONTINUE K = K + 1 ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN DO 200 JJ = 1, N IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) .OR. $ EVECTL( JJ, J+1 ).NE.EVECTR( JJ, K+1 ) ) THEN MATCH = .FALSE. GO TO 220 END IF 200 CONTINUE K = K + 2 END IF 210 CONTINUE 220 CONTINUE IF( .NOT.MATCH ) $ WRITE( NOUNIT, FMT = 9997 )'Left', 'STREVC', N, JTYPE, $ IOLDSD * * Call SHSEIN for Right eigenvectors of H, do test 11 * NTEST = 11 RESULT( 11 ) = ULPINV DO 230 J = 1, N SELECT( J ) = .TRUE. 230 CONTINUE * CALL SHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA, $ WR3, WI3, DUMMA, LDU, EVECTX, LDU, N1, IN, $ WORK, IWORK, IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SHSEIN(R)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 250 ELSE * * Test 11: | HX - XW | / ( |H| |X| ulp ) * * (from inverse iteration) * CALL SGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, WR3, $ WI3, WORK, DUMMA( 1 ) ) IF( DUMMA( 1 ).LT.ULPINV ) $ RESULT( 11 ) = DUMMA( 1 )*ANINV IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'SHSEIN', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF END IF * * Call SHSEIN for Left eigenvectors of H, do test 12 * NTEST = 12 RESULT( 12 ) = ULPINV DO 240 J = 1, N SELECT( J ) = .TRUE. 240 CONTINUE * CALL SHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, WR3, $ WI3, EVECTY, LDU, DUMMA, LDU, N1, IN, WORK, $ IWORK, IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SHSEIN(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 250 ELSE * * Test 12: | YH - WY | / ( |H| |Y| ulp ) * * (from inverse iteration) * CALL SGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, WR3, $ WI3, WORK, DUMMA( 3 ) ) IF( DUMMA( 3 ).LT.ULPINV ) $ RESULT( 12 ) = DUMMA( 3 )*ANINV IF( DUMMA( 4 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'SHSEIN', $ DUMMA( 4 ), N, JTYPE, IOLDSD END IF END IF * * Call SORMHR for Right eigenvectors of A, do test 13 * NTEST = 13 RESULT( 13 ) = ULPINV * CALL SORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU, $ LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SORMHR(R)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 250 ELSE * * Test 13: | AX - XW | / ( |A| |X| ulp ) * * (from inverse iteration) * CALL SGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, WR3, $ WI3, WORK, DUMMA( 1 ) ) IF( DUMMA( 1 ).LT.ULPINV ) $ RESULT( 13 ) = DUMMA( 1 )*ANINV END IF * * Call SORMHR for Left eigenvectors of A, do test 14 * NTEST = 14 RESULT( 14 ) = ULPINV * CALL SORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU, $ LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SORMHR(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 250 ELSE * * Test 14: | YA - WY | / ( |A| |Y| ulp ) * * (from inverse iteration) * CALL SGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, WR3, $ WI3, WORK, DUMMA( 3 ) ) IF( DUMMA( 3 ).LT.ULPINV ) $ RESULT( 14 ) = DUMMA( 3 )*ANINV END IF * * Compute Left and Right Eigenvectors of A * * Compute a Right eigenvector matrix: * NTEST = 15 RESULT( 15 ) = ULPINV * CALL SLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU ) * CALL STREVC3( 'Right', 'Back', SELECT, N, T1, LDA, DUMMA, $ LDU, EVECTR, LDU, N, IN, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'STREVC3(R,B)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Test 15: | AR - RW | / ( |A| |R| ulp ) * * (from Schur decomposition) * CALL SGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, WR1, $ WI1, WORK, DUMMA( 1 ) ) RESULT( 15 ) = DUMMA( 1 ) IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'STREVC3', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF * * Compute a Left eigenvector matrix: * NTEST = 16 RESULT( 16 ) = ULPINV * CALL SLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU ) * CALL STREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL, $ LDU, DUMMA, LDU, N, IN, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'STREVC3(L,B)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Test 16: | LA - WL | / ( |A| |L| ulp ) * * (from Schur decomposition) * CALL SGET22( 'Trans', 'N', 'Conj', N, A, LDA, EVECTL, LDU, $ WR1, WI1, WORK, DUMMA( 3 ) ) RESULT( 16 ) = DUMMA( 3 ) IF( DUMMA( 4 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'STREVC3', DUMMA( 4 ), $ N, JTYPE, IOLDSD END IF * * End of Loop -- Check for RESULT(j) > THRESH * 250 CONTINUE * NTESTT = NTESTT + NTEST CALL SLAFTS( 'SHS', N, N, JTYPE, NTEST, RESULT, IOLDSD, $ THRESH, NOUNIT, NERRS ) * 260 CONTINUE 270 CONTINUE * * Summary * CALL SLASUM( 'SHS', NOUNIT, NERRS, NTESTT ) * RETURN * 9999 FORMAT( ' SCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) 9998 FORMAT( ' SCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ', $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X, $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, $ ')' ) 9997 FORMAT( ' SCHKHS: Selected ', A, ' Eigenvectors from ', A, $ ' do not match other eigenvectors ', 9X, 'N=', I6, $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * * End of SCHKHS * END