*> \brief \b CPTT01 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CPTT01( N, D, E, DF, EF, WORK, RESID ) * * .. Scalar Arguments .. * INTEGER N * REAL RESID * .. * .. Array Arguments .. * REAL D( * ), DF( * ) * COMPLEX E( * ), EF( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CPTT01 reconstructs a tridiagonal matrix A from its L*D*L' *> factorization and computes the residual *> norm(L*D*L' - A) / ( n * norm(A) * EPS ), *> where EPS is the machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The n diagonal elements of the tridiagonal matrix A. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is COMPLEX array, dimension (N-1) *> The (n-1) subdiagonal elements of the tridiagonal matrix A. *> \endverbatim *> *> \param[in] DF *> \verbatim *> DF is REAL array, dimension (N) *> The n diagonal elements of the factor L from the L*D*L' *> factorization of A. *> \endverbatim *> *> \param[in] EF *> \verbatim *> EF is COMPLEX array, dimension (N-1) *> The (n-1) subdiagonal elements of the factor L from the *> L*D*L' factorization of A. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (2*N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is REAL *> norm(L*D*L' - A) / (n * norm(A) * EPS) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CPTT01( N, D, E, DF, EF, WORK, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER N REAL RESID * .. * .. Array Arguments .. REAL D( * ), DF( * ) COMPLEX E( * ), EF( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I REAL ANORM, EPS COMPLEX DE * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX, REAL * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * EPS = SLAMCH( 'Epsilon' ) * * Construct the difference L*D*L' - A. * WORK( 1 ) = DF( 1 ) - D( 1 ) DO 10 I = 1, N - 1 DE = DF( I )*EF( I ) WORK( N+I ) = DE - E( I ) WORK( 1+I ) = DE*CONJG( EF( I ) ) + DF( I+1 ) - D( I+1 ) 10 CONTINUE * * Compute the 1-norms of the tridiagonal matrices A and WORK. * IF( N.EQ.1 ) THEN ANORM = D( 1 ) RESID = ABS( WORK( 1 ) ) ELSE ANORM = MAX( D( 1 )+ABS( E( 1 ) ), D( N )+ABS( E( N-1 ) ) ) RESID = MAX( ABS( WORK( 1 ) )+ABS( WORK( N+1 ) ), $ ABS( WORK( N ) )+ABS( WORK( 2*N-1 ) ) ) DO 20 I = 2, N - 1 ANORM = MAX( ANORM, D( I )+ABS( E( I ) )+ABS( E( I-1 ) ) ) RESID = MAX( RESID, ABS( WORK( I ) )+ABS( WORK( N+I-1 ) )+ $ ABS( WORK( N+I ) ) ) 20 CONTINUE END IF * * Compute norm(L*D*L' - A) / (n * norm(A) * EPS) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS END IF * RETURN * * End of CPTT01 * END