*> \brief \b CQRT02 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CQRT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK, * RWORK, RESULT ) * * .. Scalar Arguments .. * INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. * REAL RESULT( * ), RWORK( * ) * COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ), * $ R( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with *> orthonormal columns that is defined as the product of k elementary *> reflectors. *> *> Given the QR factorization of an m-by-n matrix A, CQRT02 generates *> the orthogonal matrix Q defined by the factorization of the first k *> columns of A; it compares R(1:n,1:k) with Q(1:m,1:n)'*A(1:m,1:k), *> and checks that the columns of Q are orthonormal. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix Q to be generated. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix Q to be generated. *> M >= N >= 0. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of elementary reflectors whose product defines the *> matrix Q. N >= K >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The m-by-n matrix A which was factorized by CQRT01. *> \endverbatim *> *> \param[in] AF *> \verbatim *> AF is COMPLEX array, dimension (LDA,N) *> Details of the QR factorization of A, as returned by CGEQRF. *> See CGEQRF for further details. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is COMPLEX array, dimension (LDA,N) *> \endverbatim *> *> \param[out] R *> \verbatim *> R is COMPLEX array, dimension (LDA,N) *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the arrays A, AF, Q and R. LDA >= M. *> \endverbatim *> *> \param[in] TAU *> \verbatim *> TAU is COMPLEX array, dimension (N) *> The scalar factors of the elementary reflectors corresponding *> to the QR factorization in AF. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (M) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (2) *> The test ratios: *> RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) *> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CQRT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK, $ RWORK, RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL RESULT( * ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ), $ R( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, EPS, RESID * .. * .. External Functions .. REAL CLANGE, CLANSY, SLAMCH EXTERNAL CLANGE, CLANSY, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM, CHERK, CLACPY, CLASET, CUNGQR * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, REAL * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * EPS = SLAMCH( 'Epsilon' ) * * Copy the first k columns of the factorization to the array Q * CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA ) CALL CLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA ) * * Generate the first n columns of the matrix Q * SRNAMT = 'CUNGQR' CALL CUNGQR( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO ) * * Copy R(1:n,1:k) * CALL CLASET( 'Full', N, K, CMPLX( ZERO ), CMPLX( ZERO ), R, LDA ) CALL CLACPY( 'Upper', N, K, AF, LDA, R, LDA ) * * Compute R(1:n,1:k) - Q(1:m,1:n)' * A(1:m,1:k) * CALL CGEMM( 'Conjugate transpose', 'No transpose', N, K, M, $ CMPLX( -ONE ), Q, LDA, A, LDA, CMPLX( ONE ), R, LDA ) * * Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) . * ANORM = CLANGE( '1', M, K, A, LDA, RWORK ) RESID = CLANGE( '1', N, K, R, LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS ELSE RESULT( 1 ) = ZERO END IF * * Compute I - Q'*Q * CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), R, LDA ) CALL CHERK( 'Upper', 'Conjugate transpose', N, M, -ONE, Q, LDA, $ ONE, R, LDA ) * * Compute norm( I - Q'*Q ) / ( M * EPS ) . * RESID = CLANSY( '1', 'Upper', N, R, LDA, RWORK ) * RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS * RETURN * * End of CQRT02 * END