*> \brief \b ZCHKPT * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, * A, D, E, B, X, XACT, WORK, RWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NN, NNS, NOUT * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER NSVAL( * ), NVAL( * ) * DOUBLE PRECISION D( * ), RWORK( * ) * COMPLEX*16 A( * ), B( * ), E( * ), WORK( * ), X( * ), * $ XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKPT tests ZPTTRF, -TRS, -RFS, and -CON *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] NNS *> \verbatim *> NNS is INTEGER *> The number of values of NRHS contained in the vector NSVAL. *> \endverbatim *> *> \param[in] NSVAL *> \verbatim *> NSVAL is INTEGER array, dimension (NNS) *> The values of the number of right hand sides NRHS. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (NMAX*2) *> \endverbatim *> *> \param[out] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (NMAX*2) *> \endverbatim *> *> \param[out] E *> \verbatim *> E is COMPLEX*16 array, dimension (NMAX*2) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX*16 array, dimension (NMAX*NSMAX) *> where NSMAX is the largest entry in NSVAL. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension *> (NMAX*max(3,NSMAX)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension *> (max(NMAX,2*NSMAX)) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ A, D, E, B, X, XACT, WORK, RWORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NN, NNS, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER NSVAL( * ), NVAL( * ) DOUBLE PRECISION D( * ), RWORK( * ) COMPLEX*16 A( * ), B( * ), E( * ), WORK( * ), X( * ), $ XACT( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) INTEGER NTYPES PARAMETER ( NTYPES = 12 ) INTEGER NTESTS PARAMETER ( NTESTS = 7 ) * .. * .. Local Scalars .. LOGICAL ZEROT CHARACTER DIST, TYPE, UPLO CHARACTER*3 PATH INTEGER I, IA, IMAT, IN, INFO, IRHS, IUPLO, IX, IZERO, $ J, K, KL, KU, LDA, MODE, N, NERRS, NFAIL, $ NIMAT, NRHS, NRUN DOUBLE PRECISION AINVNM, ANORM, COND, DMAX, RCOND, RCONDC * .. * .. Local Arrays .. CHARACTER UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) COMPLEX*16 Z( 3 ) * .. * .. External Functions .. INTEGER IDAMAX DOUBLE PRECISION DGET06, DZASUM, ZLANHT EXTERNAL IDAMAX, DGET06, DZASUM, ZLANHT * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, DCOPY, DLARNV, DSCAL, $ ZCOPY, ZDSCAL, ZERRGT, ZGET04, ZLACPY, ZLAPTM, $ ZLARNV, ZLATB4, ZLATMS, ZPTCON, ZPTRFS, ZPTT01, $ ZPTT02, ZPTT05, ZPTTRF, ZPTTRS * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 0, 0, 0, 1 / , UPLOS / 'U', 'L' / * .. * .. Executable Statements .. * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'PT' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL ZERRGT( PATH, NOUT ) INFOT = 0 * DO 120 IN = 1, NN * * Do for each value of N in NVAL. * N = NVAL( IN ) LDA = MAX( 1, N ) NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * DO 110 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) ) $ GO TO 110 * * Set up parameters with ZLATB4. * CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, $ COND, DIST ) * ZEROT = IMAT.GE.8 .AND. IMAT.LE.10 IF( IMAT.LE.6 ) THEN * * Type 1-6: generate a Hermitian tridiagonal matrix of * known condition number in lower triangular band storage. * SRNAMT = 'ZLATMS' CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND, $ ANORM, KL, KU, 'B', A, 2, WORK, INFO ) * * Check the error code from ZLATMS. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, KL, $ KU, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 110 END IF IZERO = 0 * * Copy the matrix to D and E. * IA = 1 DO 20 I = 1, N - 1 D( I ) = DBLE( A( IA ) ) E( I ) = A( IA+1 ) IA = IA + 2 20 CONTINUE IF( N.GT.0 ) $ D( N ) = DBLE( A( IA ) ) ELSE * * Type 7-12: generate a diagonally dominant matrix with * unknown condition number in the vectors D and E. * IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN * * Let E be complex, D real, with values from [-1,1]. * CALL DLARNV( 2, ISEED, N, D ) CALL ZLARNV( 2, ISEED, N-1, E ) * * Make the tridiagonal matrix diagonally dominant. * IF( N.EQ.1 ) THEN D( 1 ) = ABS( D( 1 ) ) ELSE D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) ) D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) ) DO 30 I = 2, N - 1 D( I ) = ABS( D( I ) ) + ABS( E( I ) ) + $ ABS( E( I-1 ) ) 30 CONTINUE END IF * * Scale D and E so the maximum element is ANORM. * IX = IDAMAX( N, D, 1 ) DMAX = D( IX ) CALL DSCAL( N, ANORM / DMAX, D, 1 ) CALL ZDSCAL( N-1, ANORM / DMAX, E, 1 ) * ELSE IF( IZERO.GT.0 ) THEN * * Reuse the last matrix by copying back the zeroed out * elements. * IF( IZERO.EQ.1 ) THEN D( 1 ) = DBLE( Z( 2 ) ) IF( N.GT.1 ) $ E( 1 ) = Z( 3 ) ELSE IF( IZERO.EQ.N ) THEN E( N-1 ) = Z( 1 ) D( N ) = DBLE( Z( 2 ) ) ELSE E( IZERO-1 ) = Z( 1 ) D( IZERO ) = DBLE( Z( 2 ) ) E( IZERO ) = Z( 3 ) END IF END IF * * For types 8-10, set one row and column of the matrix to * zero. * IZERO = 0 IF( IMAT.EQ.8 ) THEN IZERO = 1 Z( 2 ) = D( 1 ) D( 1 ) = ZERO IF( N.GT.1 ) THEN Z( 3 ) = E( 1 ) E( 1 ) = ZERO END IF ELSE IF( IMAT.EQ.9 ) THEN IZERO = N IF( N.GT.1 ) THEN Z( 1 ) = E( N-1 ) E( N-1 ) = ZERO END IF Z( 2 ) = D( N ) D( N ) = ZERO ELSE IF( IMAT.EQ.10 ) THEN IZERO = ( N+1 ) / 2 IF( IZERO.GT.1 ) THEN Z( 1 ) = E( IZERO-1 ) Z( 3 ) = E( IZERO ) E( IZERO-1 ) = ZERO E( IZERO ) = ZERO END IF Z( 2 ) = D( IZERO ) D( IZERO ) = ZERO END IF END IF * CALL DCOPY( N, D, 1, D( N+1 ), 1 ) IF( N.GT.1 ) $ CALL ZCOPY( N-1, E, 1, E( N+1 ), 1 ) * *+ TEST 1 * Factor A as L*D*L' and compute the ratio * norm(L*D*L' - A) / (n * norm(A) * EPS ) * CALL ZPTTRF( N, D( N+1 ), E( N+1 ), INFO ) * * Check error code from ZPTTRF. * IF( INFO.NE.IZERO ) THEN CALL ALAERH( PATH, 'ZPTTRF', INFO, IZERO, ' ', N, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 110 END IF * IF( INFO.GT.0 ) THEN RCONDC = ZERO GO TO 100 END IF * CALL ZPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK, $ RESULT( 1 ) ) * * Print the test ratio if greater than or equal to THRESH. * IF( RESULT( 1 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 * * Compute RCONDC = 1 / (norm(A) * norm(inv(A)) * * Compute norm(A). * ANORM = ZLANHT( '1', N, D, E ) * * Use ZPTTRS to solve for one column at a time of inv(A), * computing the maximum column sum as we go. * AINVNM = ZERO DO 50 I = 1, N DO 40 J = 1, N X( J ) = ZERO 40 CONTINUE X( I ) = ONE CALL ZPTTRS( 'Lower', N, 1, D( N+1 ), E( N+1 ), X, LDA, $ INFO ) AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) ) 50 CONTINUE RCONDC = ONE / MAX( ONE, ANORM*AINVNM ) * DO 90 IRHS = 1, NNS NRHS = NSVAL( IRHS ) * * Generate NRHS random solution vectors. * IX = 1 DO 60 J = 1, NRHS CALL ZLARNV( 2, ISEED, N, XACT( IX ) ) IX = IX + LDA 60 CONTINUE * DO 80 IUPLO = 1, 2 * * Do first for UPLO = 'U', then for UPLO = 'L'. * UPLO = UPLOS( IUPLO ) * * Set the right hand side. * CALL ZLAPTM( UPLO, N, NRHS, ONE, D, E, XACT, LDA, $ ZERO, B, LDA ) * *+ TEST 2 * Solve A*x = b and compute the residual. * CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) CALL ZPTTRS( UPLO, N, NRHS, D( N+1 ), E( N+1 ), X, $ LDA, INFO ) * * Check error code from ZPTTRS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZPTTRS', INFO, 0, UPLO, N, N, $ -1, -1, NRHS, IMAT, NFAIL, NERRS, $ NOUT ) * CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) CALL ZPTT02( UPLO, N, NRHS, D, E, X, LDA, WORK, LDA, $ RESULT( 2 ) ) * *+ TEST 3 * Check solution from generated exact solution. * CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 3 ) ) * *+ TESTS 4, 5, and 6 * Use iterative refinement to improve the solution. * SRNAMT = 'ZPTRFS' CALL ZPTRFS( UPLO, N, NRHS, D, E, D( N+1 ), E( N+1 ), $ B, LDA, X, LDA, RWORK, RWORK( NRHS+1 ), $ WORK, RWORK( 2*NRHS+1 ), INFO ) * * Check error code from ZPTRFS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZPTRFS', INFO, 0, UPLO, N, N, $ -1, -1, NRHS, IMAT, NFAIL, NERRS, $ NOUT ) * CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 4 ) ) CALL ZPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA, $ RWORK, RWORK( NRHS+1 ), RESULT( 5 ) ) * * Print information about the tests that did not pass the * threshold. * DO 70 K = 2, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, IMAT, $ K, RESULT( K ) NFAIL = NFAIL + 1 END IF 70 CONTINUE NRUN = NRUN + 5 * 80 CONTINUE 90 CONTINUE * *+ TEST 7 * Estimate the reciprocal of the condition number of the * matrix. * 100 CONTINUE SRNAMT = 'ZPTCON' CALL ZPTCON( N, D( N+1 ), E( N+1 ), ANORM, RCOND, RWORK, $ INFO ) * * Check error code from ZPTCON. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZPTCON', INFO, 0, ' ', N, N, -1, -1, $ -1, IMAT, NFAIL, NERRS, NOUT ) * RESULT( 7 ) = DGET06( RCOND, RCONDC ) * * Print the test ratio if greater than or equal to THRESH. * IF( RESULT( 7 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )N, IMAT, 7, RESULT( 7 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 110 CONTINUE 120 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' N =', I5, ', type ', I2, ', test ', I2, ', ratio = ', $ G12.5 ) 9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS =', I3, $ ', type ', I2, ', test ', I2, ', ratio = ', G12.5 ) RETURN * * End of ZCHKPT * END