*> \brief \b CPOTRF * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CPOTRF + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CPOTRF( UPLO, N, A, LDA, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, N * .. * .. Array Arguments .. * COMPLEX A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CPOTRF computes the Cholesky factorization of a complex Hermitian *> positive definite matrix A. *> *> The factorization has the form *> A = U**H * U, if UPLO = 'U', or *> A = L * L**H, if UPLO = 'L', *> where U is an upper triangular matrix and L is lower triangular. *> *> This is the block version of the algorithm, calling Level 3 BLAS. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading *> N-by-N upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower *> triangular part of A is not referenced. If UPLO = 'L', the *> leading N-by-N lower triangular part of A contains the lower *> triangular part of the matrix A, and the strictly upper *> triangular part of A is not referenced. *> *> On exit, if INFO = 0, the factor U or L from the Cholesky *> factorization A = U**H*U or A = L*L**H. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, the leading principal minor of order i *> is not positive, and the factorization could not be *> completed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complexPOcomputational * * ===================================================================== SUBROUTINE CPOTRF( UPLO, N, A, LDA, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. COMPLEX A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE COMPLEX CONE PARAMETER ( ONE = 1.0E+0, CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, JB, NB * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL CGEMM, CHERK, CPOTRF2, CTRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CPOTRF', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Determine the block size for this environment. * NB = ILAENV( 1, 'CPOTRF', UPLO, N, -1, -1, -1 ) IF( NB.LE.1 .OR. NB.GE.N ) THEN * * Use unblocked code. * CALL CPOTRF2( UPLO, N, A, LDA, INFO ) ELSE * * Use blocked code. * IF( UPPER ) THEN * * Compute the Cholesky factorization A = U**H *U. * DO 10 J = 1, N, NB * * Update and factorize the current diagonal block and test * for non-positive-definiteness. * JB = MIN( NB, N-J+1 ) CALL CHERK( 'Upper', 'Conjugate transpose', JB, J-1, $ -ONE, A( 1, J ), LDA, ONE, A( J, J ), LDA ) CALL CPOTRF2( 'Upper', JB, A( J, J ), LDA, INFO ) IF( INFO.NE.0 ) $ GO TO 30 IF( J+JB.LE.N ) THEN * * Compute the current block row. * CALL CGEMM( 'Conjugate transpose', 'No transpose', JB, $ N-J-JB+1, J-1, -CONE, A( 1, J ), LDA, $ A( 1, J+JB ), LDA, CONE, A( J, J+JB ), $ LDA ) CALL CTRSM( 'Left', 'Upper', 'Conjugate transpose', $ 'Non-unit', JB, N-J-JB+1, CONE, A( J, J ), $ LDA, A( J, J+JB ), LDA ) END IF 10 CONTINUE * ELSE * * Compute the Cholesky factorization A = L*L**H. * DO 20 J = 1, N, NB * * Update and factorize the current diagonal block and test * for non-positive-definiteness. * JB = MIN( NB, N-J+1 ) CALL CHERK( 'Lower', 'No transpose', JB, J-1, -ONE, $ A( J, 1 ), LDA, ONE, A( J, J ), LDA ) CALL CPOTRF2( 'Lower', JB, A( J, J ), LDA, INFO ) IF( INFO.NE.0 ) $ GO TO 30 IF( J+JB.LE.N ) THEN * * Compute the current block column. * CALL CGEMM( 'No transpose', 'Conjugate transpose', $ N-J-JB+1, JB, J-1, -CONE, A( J+JB, 1 ), $ LDA, A( J, 1 ), LDA, CONE, A( J+JB, J ), $ LDA ) CALL CTRSM( 'Right', 'Lower', 'Conjugate transpose', $ 'Non-unit', N-J-JB+1, JB, CONE, A( J, J ), $ LDA, A( J+JB, J ), LDA ) END IF 20 CONTINUE END IF END IF GO TO 40 * 30 CONTINUE INFO = INFO + J - 1 * 40 CONTINUE RETURN * * End of CPOTRF * END