*> \brief \b CUNBDB6 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CUNBDB6 + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, * LDQ2, WORK, LWORK, INFO ) * * .. Scalar Arguments .. * INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2, * $ N * .. * .. Array Arguments .. * COMPLEX Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*) * .. * * *> \par Purpose: * ============= *> *>\verbatim *> *> CUNBDB6 orthogonalizes the column vector *> X = [ X1 ] *> [ X2 ] *> with respect to the columns of *> Q = [ Q1 ] . *> [ Q2 ] *> The Euclidean norm of X must be one and the columns of Q must be *> orthonormal. The orthogonalized vector will be zero if and only if it *> lies entirely in the range of Q. *> *> The projection is computed with at most two iterations of the *> classical Gram-Schmidt algorithm, see *> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error *> analysis of the Gram-Schmidt algorithm with reorthogonalization." *> 2002. CERFACS Technical Report No. TR/PA/02/33. URL: *> https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf *> *>\endverbatim * * Arguments: * ========== * *> \param[in] M1 *> \verbatim *> M1 is INTEGER *> The dimension of X1 and the number of rows in Q1. 0 <= M1. *> \endverbatim *> *> \param[in] M2 *> \verbatim *> M2 is INTEGER *> The dimension of X2 and the number of rows in Q2. 0 <= M2. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns in Q1 and Q2. 0 <= N. *> \endverbatim *> *> \param[in,out] X1 *> \verbatim *> X1 is COMPLEX array, dimension (M1) *> On entry, the top part of the vector to be orthogonalized. *> On exit, the top part of the projected vector. *> \endverbatim *> *> \param[in] INCX1 *> \verbatim *> INCX1 is INTEGER *> Increment for entries of X1. *> \endverbatim *> *> \param[in,out] X2 *> \verbatim *> X2 is COMPLEX array, dimension (M2) *> On entry, the bottom part of the vector to be *> orthogonalized. On exit, the bottom part of the projected *> vector. *> \endverbatim *> *> \param[in] INCX2 *> \verbatim *> INCX2 is INTEGER *> Increment for entries of X2. *> \endverbatim *> *> \param[in] Q1 *> \verbatim *> Q1 is COMPLEX array, dimension (LDQ1, N) *> The top part of the orthonormal basis matrix. *> \endverbatim *> *> \param[in] LDQ1 *> \verbatim *> LDQ1 is INTEGER *> The leading dimension of Q1. LDQ1 >= M1. *> \endverbatim *> *> \param[in] Q2 *> \verbatim *> Q2 is COMPLEX array, dimension (LDQ2, N) *> The bottom part of the orthonormal basis matrix. *> \endverbatim *> *> \param[in] LDQ2 *> \verbatim *> LDQ2 is INTEGER *> The leading dimension of Q2. LDQ2 >= M2. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= N. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complexOTHERcomputational * * ===================================================================== SUBROUTINE CUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, $ LDQ2, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2, $ N * .. * .. Array Arguments .. COMPLEX Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*) * .. * * ===================================================================== * * .. Parameters .. REAL ALPHA, REALONE, REALZERO PARAMETER ( ALPHA = 0.01E0, REALONE = 1.0E0, $ REALZERO = 0.0E0 ) COMPLEX NEGONE, ONE, ZERO PARAMETER ( NEGONE = (-1.0E0,0.0E0), ONE = (1.0E0,0.0E0), $ ZERO = (0.0E0,0.0E0) ) * .. * .. Local Scalars .. INTEGER I, IX REAL EPS, NORM, NORM_NEW, SCL, SSQ * .. * .. External Functions .. REAL SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMV, CLASSQ, XERBLA * .. * .. Intrinsic Function .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test input arguments * INFO = 0 IF( M1 .LT. 0 ) THEN INFO = -1 ELSE IF( M2 .LT. 0 ) THEN INFO = -2 ELSE IF( N .LT. 0 ) THEN INFO = -3 ELSE IF( INCX1 .LT. 1 ) THEN INFO = -5 ELSE IF( INCX2 .LT. 1 ) THEN INFO = -7 ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN INFO = -9 ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN INFO = -11 ELSE IF( LWORK .LT. N ) THEN INFO = -13 END IF * IF( INFO .NE. 0 ) THEN CALL XERBLA( 'CUNBDB6', -INFO ) RETURN END IF * EPS = SLAMCH( 'Precision' ) * * First, project X onto the orthogonal complement of Q's column * space * * Christoph Conrads: In debugging mode the norm should be computed * and an assertion added comparing the norm with one. Alas, Fortran * never made it into 1989 when assert() was introduced into the C * programming language. NORM = REALONE * IF( M1 .EQ. 0 ) THEN DO I = 1, N WORK(I) = ZERO END DO ELSE CALL CGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK, $ 1 ) END IF * CALL CGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 ) * CALL CGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1, $ INCX1 ) CALL CGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, $ INCX2 ) * SCL = REALZERO SSQ = REALZERO CALL CLASSQ( M1, X1, INCX1, SCL, SSQ ) CALL CLASSQ( M2, X2, INCX2, SCL, SSQ ) NORM_NEW = SCL * SQRT(SSQ) * * If projection is sufficiently large in norm, then stop. * If projection is zero, then stop. * Otherwise, project again. * IF( NORM_NEW .GE. ALPHA * NORM ) THEN RETURN END IF * IF( NORM_NEW .LE. N * EPS * NORM ) THEN DO IX = 1, 1 + (M1-1)*INCX1, INCX1 X1( IX ) = ZERO END DO DO IX = 1, 1 + (M2-1)*INCX2, INCX2 X2( IX ) = ZERO END DO RETURN END IF * NORM = NORM_NEW * DO I = 1, N WORK(I) = ZERO END DO * IF( M1 .EQ. 0 ) THEN DO I = 1, N WORK(I) = ZERO END DO ELSE CALL CGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK, $ 1 ) END IF * CALL CGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 ) * CALL CGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1, $ INCX1 ) CALL CGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, $ INCX2 ) * SCL = REALZERO SSQ = REALZERO CALL CLASSQ( M1, X1, INCX1, SCL, SSQ ) CALL CLASSQ( M2, X2, INCX2, SCL, SSQ ) NORM_NEW = SCL * SQRT(SSQ) * * If second projection is sufficiently large in norm, then do * nothing more. Alternatively, if it shrunk significantly, then * truncate it to zero. * IF( NORM_NEW .LT. ALPHA * NORM ) THEN DO IX = 1, 1 + (M1-1)*INCX1, INCX1 X1(IX) = ZERO END DO DO IX = 1, 1 + (M2-1)*INCX2, INCX2 X2(IX) = ZERO END DO END IF * RETURN * * End of CUNBDB6 * END