*> \brief \b SLAQZ1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAQZ1 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2,
* $ V )
* IMPLICIT NONE
*
* Arguments
* INTEGER, INTENT( IN ) :: LDA, LDB
* REAL, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1, SR2, SI,
* $ BETA1, BETA2
* REAL, INTENT( OUT ) :: V( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Given a 3-by-3 matrix pencil (A,B), SLAQZ1 sets v to a
*> scalar multiple of the first column of the product
*>
*> (*) K = (A - (beta2*sr2 - i*si)*B)*B^(-1)*(beta1*A - (sr2 + i*si2)*B)*B^(-1).
*>
*> It is assumed that either
*>
*> 1) sr1 = sr2
*> or
*> 2) si = 0.
*>
*> This is useful for starting double implicit shift bulges
*> in the QZ algorithm.
*> \endverbatim
*
*
* Arguments:
* ==========
*
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The 3-by-3 matrix A in (*).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A as declared in
*> the calling procedure.
*> \endverbatim
*
*> \param[in] B
*> \verbatim
*> B is REAL array, dimension (LDB,N)
*> The 3-by-3 matrix B in (*).
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B as declared in
*> the calling procedure.
*> \endverbatim
*>
*> \param[in] SR1
*> \verbatim
*> SR1 is REAL
*> \endverbatim
*>
*> \param[in] SR2
*> \verbatim
*> SR2 is REAL
*> \endverbatim
*>
*> \param[in] SI
*> \verbatim
*> SI is REAL
*> \endverbatim
*>
*> \param[in] BETA1
*> \verbatim
*> BETA1 is REAL
*> \endverbatim
*>
*> \param[in] BETA2
*> \verbatim
*> BETA2 is REAL
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is REAL array, dimension (N)
*> A scalar multiple of the first column of the
*> matrix K in (*).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Thijs Steel, KU Leuven
*
*> \date May 2020
*
*> \ingroup doubleGEcomputational
*>
* =====================================================================
SUBROUTINE SLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2,
$ V )
IMPLICIT NONE
*
* Arguments
INTEGER, INTENT( IN ) :: LDA, LDB
REAL, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1, SR2, SI,
$ BETA1, BETA2
REAL, INTENT( OUT ) :: V( * )
*
* Parameters
REAL :: ZERO, ONE, HALF
PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
*
* Local scalars
REAL :: W( 2 ), SAFMIN, SAFMAX, SCALE1, SCALE2
*
* External Functions
REAL, EXTERNAL :: SLAMCH
LOGICAL, EXTERNAL :: SISNAN
*
SAFMIN = SLAMCH( 'SAFE MINIMUM' )
SAFMAX = ONE/SAFMIN
*
* Calculate first shifted vector
*
W( 1 ) = BETA1*A( 1, 1 )-SR1*B( 1, 1 )
W( 2 ) = BETA1*A( 2, 1 )-SR1*B( 2, 1 )
SCALE1 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) )
IF( SCALE1 .GE. SAFMIN .AND. SCALE1 .LE. SAFMAX ) THEN
W( 1 ) = W( 1 )/SCALE1
W( 2 ) = W( 2 )/SCALE1
END IF
*
* Solve linear system
*
W( 2 ) = W( 2 )/B( 2, 2 )
W( 1 ) = ( W( 1 )-B( 1, 2 )*W( 2 ) )/B( 1, 1 )
SCALE2 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) )
IF( SCALE2 .GE. SAFMIN .AND. SCALE2 .LE. SAFMAX ) THEN
W( 1 ) = W( 1 )/SCALE2
W( 2 ) = W( 2 )/SCALE2
END IF
*
* Apply second shift
*
V( 1 ) = BETA2*( A( 1, 1 )*W( 1 )+A( 1, 2 )*W( 2 ) )-SR2*( B( 1,
$ 1 )*W( 1 )+B( 1, 2 )*W( 2 ) )
V( 2 ) = BETA2*( A( 2, 1 )*W( 1 )+A( 2, 2 )*W( 2 ) )-SR2*( B( 2,
$ 1 )*W( 1 )+B( 2, 2 )*W( 2 ) )
V( 3 ) = BETA2*( A( 3, 1 )*W( 1 )+A( 3, 2 )*W( 2 ) )-SR2*( B( 3,
$ 1 )*W( 1 )+B( 3, 2 )*W( 2 ) )
*
* Account for imaginary part
*
V( 1 ) = V( 1 )+SI*SI*B( 1, 1 )/SCALE1/SCALE2
*
* Check for overflow
*
IF( ABS( V( 1 ) ).GT.SAFMAX .OR. ABS( V( 2 ) ) .GT. SAFMAX .OR.
$ ABS( V( 3 ) ).GT.SAFMAX .OR. SISNAN( V( 1 ) ) .OR.
$ SISNAN( V( 2 ) ) .OR. SISNAN( V( 3 ) ) ) THEN
V( 1 ) = ZERO
V( 2 ) = ZERO
V( 3 ) = ZERO
END IF
*
* End of SLAQZ1
*
END SUBROUTINE