*> \brief \b SLAQZ1 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAQZ1 + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2, * $ V ) * IMPLICIT NONE * * Arguments * INTEGER, INTENT( IN ) :: LDA, LDB * REAL, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1, SR2, SI, * $ BETA1, BETA2 * REAL, INTENT( OUT ) :: V( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> Given a 3-by-3 matrix pencil (A,B), SLAQZ1 sets v to a *> scalar multiple of the first column of the product *> *> (*) K = (A - (beta2*sr2 - i*si)*B)*B^(-1)*(beta1*A - (sr2 + i*si2)*B)*B^(-1). *> *> It is assumed that either *> *> 1) sr1 = sr2 *> or *> 2) si = 0. *> *> This is useful for starting double implicit shift bulges *> in the QZ algorithm. *> \endverbatim * * * Arguments: * ========== * *> \param[in] A *> \verbatim *> A is REAL array, dimension (LDA,N) *> The 3-by-3 matrix A in (*). *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A as declared in *> the calling procedure. *> \endverbatim * *> \param[in] B *> \verbatim *> B is REAL array, dimension (LDB,N) *> The 3-by-3 matrix B in (*). *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B as declared in *> the calling procedure. *> \endverbatim *> *> \param[in] SR1 *> \verbatim *> SR1 is REAL *> \endverbatim *> *> \param[in] SR2 *> \verbatim *> SR2 is REAL *> \endverbatim *> *> \param[in] SI *> \verbatim *> SI is REAL *> \endverbatim *> *> \param[in] BETA1 *> \verbatim *> BETA1 is REAL *> \endverbatim *> *> \param[in] BETA2 *> \verbatim *> BETA2 is REAL *> \endverbatim *> *> \param[out] V *> \verbatim *> V is REAL array, dimension (N) *> A scalar multiple of the first column of the *> matrix K in (*). *> \endverbatim * * Authors: * ======== * *> \author Thijs Steel, KU Leuven * *> \date May 2020 * *> \ingroup doubleGEcomputational *> * ===================================================================== SUBROUTINE SLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2, $ V ) IMPLICIT NONE * * Arguments INTEGER, INTENT( IN ) :: LDA, LDB REAL, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1, SR2, SI, $ BETA1, BETA2 REAL, INTENT( OUT ) :: V( * ) * * Parameters REAL :: ZERO, ONE, HALF PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 ) * * Local scalars REAL :: W( 2 ), SAFMIN, SAFMAX, SCALE1, SCALE2 * * External Functions REAL, EXTERNAL :: SLAMCH LOGICAL, EXTERNAL :: SISNAN * SAFMIN = SLAMCH( 'SAFE MINIMUM' ) SAFMAX = ONE/SAFMIN * * Calculate first shifted vector * W( 1 ) = BETA1*A( 1, 1 )-SR1*B( 1, 1 ) W( 2 ) = BETA1*A( 2, 1 )-SR1*B( 2, 1 ) SCALE1 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) ) IF( SCALE1 .GE. SAFMIN .AND. SCALE1 .LE. SAFMAX ) THEN W( 1 ) = W( 1 )/SCALE1 W( 2 ) = W( 2 )/SCALE1 END IF * * Solve linear system * W( 2 ) = W( 2 )/B( 2, 2 ) W( 1 ) = ( W( 1 )-B( 1, 2 )*W( 2 ) )/B( 1, 1 ) SCALE2 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) ) IF( SCALE2 .GE. SAFMIN .AND. SCALE2 .LE. SAFMAX ) THEN W( 1 ) = W( 1 )/SCALE2 W( 2 ) = W( 2 )/SCALE2 END IF * * Apply second shift * V( 1 ) = BETA2*( A( 1, 1 )*W( 1 )+A( 1, 2 )*W( 2 ) )-SR2*( B( 1, $ 1 )*W( 1 )+B( 1, 2 )*W( 2 ) ) V( 2 ) = BETA2*( A( 2, 1 )*W( 1 )+A( 2, 2 )*W( 2 ) )-SR2*( B( 2, $ 1 )*W( 1 )+B( 2, 2 )*W( 2 ) ) V( 3 ) = BETA2*( A( 3, 1 )*W( 1 )+A( 3, 2 )*W( 2 ) )-SR2*( B( 3, $ 1 )*W( 1 )+B( 3, 2 )*W( 2 ) ) * * Account for imaginary part * V( 1 ) = V( 1 )+SI*SI*B( 1, 1 )/SCALE1/SCALE2 * * Check for overflow * IF( ABS( V( 1 ) ).GT.SAFMAX .OR. ABS( V( 2 ) ) .GT. SAFMAX .OR. $ ABS( V( 3 ) ).GT.SAFMAX .OR. SISNAN( V( 1 ) ) .OR. $ SISNAN( V( 2 ) ) .OR. SISNAN( V( 3 ) ) ) THEN V( 1 ) = ZERO V( 2 ) = ZERO V( 3 ) = ZERO END IF * * End of SLAQZ1 * END SUBROUTINE