*> \brief \b SLAQZ3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAQZ3 + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, * $ LDB, Q, LDQ, Z, LDZ, NS, ND, ALPHAR, ALPHAI, BETA, QC, LDQC, * $ ZC, LDZC, WORK, LWORK, REC, INFO ) * IMPLICIT NONE * * Arguments * LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ * INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ, * $ LDQC, LDZC, LWORK, REC * * REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), * $ Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * ) * INTEGER, INTENT( OUT ) :: NS, ND, INFO * REAL :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAQZ3 performs AED *> \endverbatim * * Arguments: * ========== * *> \param[in] ILSCHUR *> \verbatim *> ILSCHUR is LOGICAL *> Determines whether or not to update the full Schur form *> \endverbatim *> \param[in] ILQ *> \verbatim *> ILQ is LOGICAL *> Determines whether or not to update the matrix Q *> \endverbatim *> *> \param[in] ILZ *> \verbatim *> ILZ is LOGICAL *> Determines whether or not to update the matrix Z *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A, B, Q, and Z. N >= 0. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI mark the rows and columns of (A,B) which *> are to be normalized *> \endverbatim *> *> \param[in] NW *> \verbatim *> NW is INTEGER *> The desired size of the deflation window. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA, N) *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max( 1, N ). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is REAL array, dimension (LDB, N) *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max( 1, N ). *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is REAL array, dimension (LDQ, N) *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is REAL array, dimension (LDZ, N) *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> \endverbatim *> *> \param[out] NS *> \verbatim *> NS is INTEGER *> The number of unconverged eigenvalues available to *> use as shifts. *> \endverbatim *> *> \param[out] ND *> \verbatim *> ND is INTEGER *> The number of converged eigenvalues found. *> \endverbatim *> *> \param[out] ALPHAR *> \verbatim *> ALPHAR is REAL array, dimension (N) *> The real parts of each scalar alpha defining an eigenvalue *> of GNEP. *> \endverbatim *> *> \param[out] ALPHAI *> \verbatim *> ALPHAI is REAL array, dimension (N) *> The imaginary parts of each scalar alpha defining an *> eigenvalue of GNEP. *> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if *> positive, then the j-th and (j+1)-st eigenvalues are a *> complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is REAL array, dimension (N) *> The scalars beta that define the eigenvalues of GNEP. *> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and *> beta = BETA(j) represent the j-th eigenvalue of the matrix *> pair (A,B), in one of the forms lambda = alpha/beta or *> mu = beta/alpha. Since either lambda or mu may overflow, *> they should not, in general, be computed. *> \endverbatim *> *> \param[in,out] QC *> \verbatim *> QC is REAL array, dimension (LDQC, NW) *> \endverbatim *> *> \param[in] LDQC *> \verbatim *> LDQC is INTEGER *> \endverbatim *> *> \param[in,out] ZC *> \verbatim *> ZC is REAL array, dimension (LDZC, NW) *> \endverbatim *> *> \param[in] LDZC *> \verbatim *> LDZ is INTEGER *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,N). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[in] REC *> \verbatim *> REC is INTEGER *> REC indicates the current recursion level. Should be set *> to 0 on first call. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Thijs Steel, KU Leuven * *> \date May 2020 * *> \ingroup doubleGEcomputational *> * ===================================================================== RECURSIVE SUBROUTINE SLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, $ A, LDA, B, LDB, Q, LDQ, Z, LDZ, NS, $ ND, ALPHAR, ALPHAI, BETA, QC, LDQC, $ ZC, LDZC, WORK, LWORK, REC, INFO ) IMPLICIT NONE * Arguments LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ, $ LDQC, LDZC, LWORK, REC REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * ) INTEGER, INTENT( OUT ) :: NS, ND, INFO REAL :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * ) * Parameters REAL :: ZERO, ONE, HALF PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 ) * Local Scalars LOGICAL :: BULGE INTEGER :: JW, KWTOP, KWBOT, ISTOPM, ISTARTM, K, K2, STGEXC_INFO, $ IFST, ILST, LWORKREQ, QZ_SMALL_INFO REAL :: S, SMLNUM, ULP, SAFMIN, SAFMAX, C1, S1, TEMP * External Functions EXTERNAL :: XERBLA, STGEXC, SLAQZ0, SLACPY, SLASET, $ SLAQZ2, SROT, SLARTG, SLAG2, SGEMM REAL, EXTERNAL :: SLAMCH INFO = 0 * Set up deflation window JW = MIN( NW, IHI-ILO+1 ) KWTOP = IHI-JW+1 IF ( KWTOP .EQ. ILO ) THEN S = ZERO ELSE S = A( KWTOP, KWTOP-1 ) END IF * Determine required workspace IFST = 1 ILST = JW CALL STGEXC( .TRUE., .TRUE., JW, A, LDA, B, LDB, QC, LDQC, ZC, $ LDZC, IFST, ILST, WORK, -1, STGEXC_INFO ) LWORKREQ = INT( WORK( 1 ) ) CALL SLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA, $ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC, $ LDQC, ZC, LDZC, WORK, -1, REC+1, QZ_SMALL_INFO ) LWORKREQ = MAX( LWORKREQ, INT( WORK( 1 ) )+2*JW**2 ) LWORKREQ = MAX( LWORKREQ, N*NW, 2*NW**2+N ) IF ( LWORK .EQ.-1 ) THEN * workspace query, quick return WORK( 1 ) = LWORKREQ RETURN ELSE IF ( LWORK .LT. LWORKREQ ) THEN INFO = -26 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAQZ3', -INFO ) RETURN END IF * Get machine constants SAFMIN = SLAMCH( 'SAFE MINIMUM' ) SAFMAX = ONE/SAFMIN ULP = SLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( REAL( N )/ULP ) IF ( IHI .EQ. KWTOP ) THEN * 1 by 1 deflation window, just try a regular deflation ALPHAR( KWTOP ) = A( KWTOP, KWTOP ) ALPHAI( KWTOP ) = ZERO BETA( KWTOP ) = B( KWTOP, KWTOP ) NS = 1 ND = 0 IF ( ABS( S ) .LE. MAX( SMLNUM, ULP*ABS( A( KWTOP, $ KWTOP ) ) ) ) THEN NS = 0 ND = 1 IF ( KWTOP .GT. ILO ) THEN A( KWTOP, KWTOP-1 ) = ZERO END IF END IF END IF * Store window in case of convergence failure CALL SLACPY( 'ALL', JW, JW, A( KWTOP, KWTOP ), LDA, WORK, JW ) CALL SLACPY( 'ALL', JW, JW, B( KWTOP, KWTOP ), LDB, WORK( JW**2+ $ 1 ), JW ) * Transform window to real schur form CALL SLASET( 'FULL', JW, JW, ZERO, ONE, QC, LDQC ) CALL SLASET( 'FULL', JW, JW, ZERO, ONE, ZC, LDZC ) CALL SLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA, $ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC, $ LDQC, ZC, LDZC, WORK( 2*JW**2+1 ), LWORK-2*JW**2, $ REC+1, QZ_SMALL_INFO ) IF( QZ_SMALL_INFO .NE. 0 ) THEN * Convergence failure, restore the window and exit ND = 0 NS = JW-QZ_SMALL_INFO CALL SLACPY( 'ALL', JW, JW, WORK, JW, A( KWTOP, KWTOP ), LDA ) CALL SLACPY( 'ALL', JW, JW, WORK( JW**2+1 ), JW, B( KWTOP, $ KWTOP ), LDB ) RETURN END IF * Deflation detection loop IF ( KWTOP .EQ. ILO .OR. S .EQ. ZERO ) THEN KWBOT = KWTOP-1 ELSE KWBOT = IHI K = 1 K2 = 1 DO WHILE ( K .LE. JW ) BULGE = .FALSE. IF ( KWBOT-KWTOP+1 .GE. 2 ) THEN BULGE = A( KWBOT, KWBOT-1 ) .NE. ZERO END IF IF ( BULGE ) THEN * Try to deflate complex conjugate eigenvalue pair TEMP = ABS( A( KWBOT, KWBOT ) )+SQRT( ABS( A( KWBOT, $ KWBOT-1 ) ) )*SQRT( ABS( A( KWBOT-1, KWBOT ) ) ) IF( TEMP .EQ. ZERO )THEN TEMP = ABS( S ) END IF IF ( MAX( ABS( S*QC( 1, KWBOT-KWTOP ) ), ABS( S*QC( 1, $ KWBOT-KWTOP+1 ) ) ) .LE. MAX( SMLNUM, $ ULP*TEMP ) ) THEN * Deflatable KWBOT = KWBOT-2 ELSE * Not deflatable, move out of the way IFST = KWBOT-KWTOP+1 ILST = K2 CALL STGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ), $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC, $ ZC, LDZC, IFST, ILST, WORK, LWORK, $ STGEXC_INFO ) K2 = K2+2 END IF K = K+2 ELSE * Try to deflate real eigenvalue TEMP = ABS( A( KWBOT, KWBOT ) ) IF( TEMP .EQ. ZERO ) THEN TEMP = ABS( S ) END IF IF ( ( ABS( S*QC( 1, KWBOT-KWTOP+1 ) ) ) .LE. MAX( ULP* $ TEMP, SMLNUM ) ) THEN * Deflatable KWBOT = KWBOT-1 ELSE * Not deflatable, move out of the way IFST = KWBOT-KWTOP+1 ILST = K2 CALL STGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ), $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC, $ ZC, LDZC, IFST, ILST, WORK, LWORK, $ STGEXC_INFO ) K2 = K2+1 END IF K = K+1 END IF END DO END IF * Store eigenvalues ND = IHI-KWBOT NS = JW-ND K = KWTOP DO WHILE ( K .LE. IHI ) BULGE = .FALSE. IF ( K .LT. IHI ) THEN IF ( A( K+1, K ) .NE. ZERO ) THEN BULGE = .TRUE. END IF END IF IF ( BULGE ) THEN * 2x2 eigenvalue block CALL SLAG2( A( K, K ), LDA, B( K, K ), LDB, SAFMIN, $ BETA( K ), BETA( K+1 ), ALPHAR( K ), $ ALPHAR( K+1 ), ALPHAI( K ) ) ALPHAI( K+1 ) = -ALPHAI( K ) K = K+2 ELSE * 1x1 eigenvalue block ALPHAR( K ) = A( K, K ) ALPHAI( K ) = ZERO BETA( K ) = B( K, K ) K = K+1 END IF END DO IF ( KWTOP .NE. ILO .AND. S .NE. ZERO ) THEN * Reflect spike back, this will create optimally packed bulges A( KWTOP:KWBOT, KWTOP-1 ) = A( KWTOP, KWTOP-1 )*QC( 1, $ 1:JW-ND ) DO K = KWBOT-1, KWTOP, -1 CALL SLARTG( A( K, KWTOP-1 ), A( K+1, KWTOP-1 ), C1, S1, $ TEMP ) A( K, KWTOP-1 ) = TEMP A( K+1, KWTOP-1 ) = ZERO K2 = MAX( KWTOP, K-1 ) CALL SROT( IHI-K2+1, A( K, K2 ), LDA, A( K+1, K2 ), LDA, C1, $ S1 ) CALL SROT( IHI-( K-1 )+1, B( K, K-1 ), LDB, B( K+1, K-1 ), $ LDB, C1, S1 ) CALL SROT( JW, QC( 1, K-KWTOP+1 ), 1, QC( 1, K+1-KWTOP+1 ), $ 1, C1, S1 ) END DO * Chase bulges down ISTARTM = KWTOP ISTOPM = IHI K = KWBOT-1 DO WHILE ( K .GE. KWTOP ) IF ( ( K .GE. KWTOP+1 ) .AND. A( K+1, K-1 ) .NE. ZERO ) THEN * Move double pole block down and remove it DO K2 = K-1, KWBOT-2 CALL SLAQZ2( .TRUE., .TRUE., K2, KWTOP, KWTOP+JW-1, $ KWBOT, A, LDA, B, LDB, JW, KWTOP, QC, $ LDQC, JW, KWTOP, ZC, LDZC ) END DO K = K-2 ELSE * k points to single shift DO K2 = K, KWBOT-2 * Move shift down CALL SLARTG( B( K2+1, K2+1 ), B( K2+1, K2 ), C1, S1, $ TEMP ) B( K2+1, K2+1 ) = TEMP B( K2+1, K2 ) = ZERO CALL SROT( K2+2-ISTARTM+1, A( ISTARTM, K2+1 ), 1, $ A( ISTARTM, K2 ), 1, C1, S1 ) CALL SROT( K2-ISTARTM+1, B( ISTARTM, K2+1 ), 1, $ B( ISTARTM, K2 ), 1, C1, S1 ) CALL SROT( JW, ZC( 1, K2+1-KWTOP+1 ), 1, ZC( 1, $ K2-KWTOP+1 ), 1, C1, S1 ) CALL SLARTG( A( K2+1, K2 ), A( K2+2, K2 ), C1, S1, $ TEMP ) A( K2+1, K2 ) = TEMP A( K2+2, K2 ) = ZERO CALL SROT( ISTOPM-K2, A( K2+1, K2+1 ), LDA, A( K2+2, $ K2+1 ), LDA, C1, S1 ) CALL SROT( ISTOPM-K2, B( K2+1, K2+1 ), LDB, B( K2+2, $ K2+1 ), LDB, C1, S1 ) CALL SROT( JW, QC( 1, K2+1-KWTOP+1 ), 1, QC( 1, $ K2+2-KWTOP+1 ), 1, C1, S1 ) END DO * Remove the shift CALL SLARTG( B( KWBOT, KWBOT ), B( KWBOT, KWBOT-1 ), C1, $ S1, TEMP ) B( KWBOT, KWBOT ) = TEMP B( KWBOT, KWBOT-1 ) = ZERO CALL SROT( KWBOT-ISTARTM, B( ISTARTM, KWBOT ), 1, $ B( ISTARTM, KWBOT-1 ), 1, C1, S1 ) CALL SROT( KWBOT-ISTARTM+1, A( ISTARTM, KWBOT ), 1, $ A( ISTARTM, KWBOT-1 ), 1, C1, S1 ) CALL SROT( JW, ZC( 1, KWBOT-KWTOP+1 ), 1, ZC( 1, $ KWBOT-1-KWTOP+1 ), 1, C1, S1 ) K = K-1 END IF END DO END IF * Apply Qc and Zc to rest of the matrix IF ( ILSCHUR ) THEN ISTARTM = 1 ISTOPM = N ELSE ISTARTM = ILO ISTOPM = IHI END IF IF ( ISTOPM-IHI > 0 ) THEN CALL SGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC, $ A( KWTOP, IHI+1 ), LDA, ZERO, WORK, JW ) CALL SLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, A( KWTOP, $ IHI+1 ), LDA ) CALL SGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC, $ B( KWTOP, IHI+1 ), LDB, ZERO, WORK, JW ) CALL SLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, B( KWTOP, $ IHI+1 ), LDB ) END IF IF ( ILQ ) THEN CALL SGEMM( 'N', 'N', N, JW, JW, ONE, Q( 1, KWTOP ), LDQ, QC, $ LDQC, ZERO, WORK, N ) CALL SLACPY( 'ALL', N, JW, WORK, N, Q( 1, KWTOP ), LDQ ) END IF IF ( KWTOP-1-ISTARTM+1 > 0 ) THEN CALL SGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, A( ISTARTM, $ KWTOP ), LDA, ZC, LDZC, ZERO, WORK, $ KWTOP-ISTARTM ) CALL SLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM, $ A( ISTARTM, KWTOP ), LDA ) CALL SGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, B( ISTARTM, $ KWTOP ), LDB, ZC, LDZC, ZERO, WORK, $ KWTOP-ISTARTM ) CALL SLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM, $ B( ISTARTM, KWTOP ), LDB ) END IF IF ( ILZ ) THEN CALL SGEMM( 'N', 'N', N, JW, JW, ONE, Z( 1, KWTOP ), LDZ, ZC, $ LDZC, ZERO, WORK, N ) CALL SLACPY( 'ALL', N, JW, WORK, N, Z( 1, KWTOP ), LDZ ) END IF END SUBROUTINE