*> \brief \b SLASD8 finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by sbdsdc. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLASD8 + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR, * DSIGMA, WORK, INFO ) * * .. Scalar Arguments .. * INTEGER ICOMPQ, INFO, K, LDDIFR * .. * .. Array Arguments .. * REAL D( * ), DIFL( * ), DIFR( LDDIFR, * ), * $ DSIGMA( * ), VF( * ), VL( * ), WORK( * ), * $ Z( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLASD8 finds the square roots of the roots of the secular equation, *> as defined by the values in DSIGMA and Z. It makes the appropriate *> calls to SLASD4, and stores, for each element in D, the distance *> to its two nearest poles (elements in DSIGMA). It also updates *> the arrays VF and VL, the first and last components of all the *> right singular vectors of the original bidiagonal matrix. *> *> SLASD8 is called from SLASD6. *> \endverbatim * * Arguments: * ========== * *> \param[in] ICOMPQ *> \verbatim *> ICOMPQ is INTEGER *> Specifies whether singular vectors are to be computed in *> factored form in the calling routine: *> = 0: Compute singular values only. *> = 1: Compute singular vectors in factored form as well. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of terms in the rational function to be solved *> by SLASD4. K >= 1. *> \endverbatim *> *> \param[out] D *> \verbatim *> D is REAL array, dimension ( K ) *> On output, D contains the updated singular values. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is REAL array, dimension ( K ) *> On entry, the first K elements of this array contain the *> components of the deflation-adjusted updating row vector. *> On exit, Z is updated. *> \endverbatim *> *> \param[in,out] VF *> \verbatim *> VF is REAL array, dimension ( K ) *> On entry, VF contains information passed through DBEDE8. *> On exit, VF contains the first K components of the first *> components of all right singular vectors of the bidiagonal *> matrix. *> \endverbatim *> *> \param[in,out] VL *> \verbatim *> VL is REAL array, dimension ( K ) *> On entry, VL contains information passed through DBEDE8. *> On exit, VL contains the first K components of the last *> components of all right singular vectors of the bidiagonal *> matrix. *> \endverbatim *> *> \param[out] DIFL *> \verbatim *> DIFL is REAL array, dimension ( K ) *> On exit, DIFL(I) = D(I) - DSIGMA(I). *> \endverbatim *> *> \param[out] DIFR *> \verbatim *> DIFR is REAL array, *> dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and *> dimension ( K ) if ICOMPQ = 0. *> On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not *> defined and will not be referenced. *> *> If ICOMPQ = 1, DIFR(1:K,2) is an array containing the *> normalizing factors for the right singular vector matrix. *> \endverbatim *> *> \param[in] LDDIFR *> \verbatim *> LDDIFR is INTEGER *> The leading dimension of DIFR, must be at least K. *> \endverbatim *> *> \param[in] DSIGMA *> \verbatim *> DSIGMA is REAL array, dimension ( K ) *> On entry, the first K elements of this array contain the old *> roots of the deflated updating problem. These are the poles *> of the secular equation. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (3*K) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = 1, a singular value did not converge *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup OTHERauxiliary * *> \par Contributors: * ================== *> *> Ming Gu and Huan Ren, Computer Science Division, University of *> California at Berkeley, USA *> * ===================================================================== SUBROUTINE SLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR, $ DSIGMA, WORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER ICOMPQ, INFO, K, LDDIFR * .. * .. Array Arguments .. REAL D( * ), DIFL( * ), DIFR( LDDIFR, * ), $ DSIGMA( * ), VF( * ), VL( * ), WORK( * ), $ Z( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J REAL DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP * .. * .. External Subroutines .. EXTERNAL SCOPY, SLASCL, SLASD4, SLASET, XERBLA * .. * .. External Functions .. REAL SDOT, SLAMC3, SNRM2 EXTERNAL SDOT, SLAMC3, SNRM2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, SIGN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN INFO = -1 ELSE IF( K.LT.1 ) THEN INFO = -2 ELSE IF( LDDIFR.LT.K ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLASD8', -INFO ) RETURN END IF * * Quick return if possible * IF( K.EQ.1 ) THEN D( 1 ) = ABS( Z( 1 ) ) DIFL( 1 ) = D( 1 ) IF( ICOMPQ.EQ.1 ) THEN DIFL( 2 ) = ONE DIFR( 1, 2 ) = ONE END IF RETURN END IF * * Book keeping. * IWK1 = 1 IWK2 = IWK1 + K IWK3 = IWK2 + K IWK2I = IWK2 - 1 IWK3I = IWK3 - 1 * * Normalize Z. * RHO = SNRM2( K, Z, 1 ) CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO ) RHO = RHO*RHO * * Initialize WORK(IWK3). * CALL SLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K ) * * Compute the updated singular values, the arrays DIFL, DIFR, * and the updated Z. * DO 40 J = 1, K CALL SLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ), $ WORK( IWK2 ), INFO ) * * If the root finder fails, report the convergence failure. * IF( INFO.NE.0 ) THEN RETURN END IF WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J ) DIFL( J ) = -WORK( J ) DIFR( J, 1 ) = -WORK( J+1 ) DO 20 I = 1, J - 1 WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )* $ WORK( IWK2I+I ) / ( DSIGMA( I )- $ DSIGMA( J ) ) / ( DSIGMA( I )+ $ DSIGMA( J ) ) 20 CONTINUE DO 30 I = J + 1, K WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )* $ WORK( IWK2I+I ) / ( DSIGMA( I )- $ DSIGMA( J ) ) / ( DSIGMA( I )+ $ DSIGMA( J ) ) 30 CONTINUE 40 CONTINUE * * Compute updated Z. * DO 50 I = 1, K Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) ) 50 CONTINUE * * Update VF and VL. * DO 80 J = 1, K DIFLJ = DIFL( J ) DJ = D( J ) DSIGJ = -DSIGMA( J ) IF( J.LT.K ) THEN DIFRJ = -DIFR( J, 1 ) DSIGJP = -DSIGMA( J+1 ) END IF WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ ) * * Use calls to the subroutine SLAMC3 to enforce the parentheses * (x+y)+z. The goal is to prevent optimizing compilers * from doing x+(y+z). * DO 60 I = 1, J - 1 WORK( I ) = Z( I ) / ( SLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ ) $ / ( DSIGMA( I )+DJ ) 60 CONTINUE DO 70 I = J + 1, K WORK( I ) = Z( I ) / ( SLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ ) $ / ( DSIGMA( I )+DJ ) 70 CONTINUE TEMP = SNRM2( K, WORK, 1 ) WORK( IWK2I+J ) = SDOT( K, WORK, 1, VF, 1 ) / TEMP WORK( IWK3I+J ) = SDOT( K, WORK, 1, VL, 1 ) / TEMP IF( ICOMPQ.EQ.1 ) THEN DIFR( J, 2 ) = TEMP END IF 80 CONTINUE * CALL SCOPY( K, WORK( IWK2 ), 1, VF, 1 ) CALL SCOPY( K, WORK( IWK3 ), 1, VL, 1 ) * RETURN * * End of SLASD8 * END