*> \brief \b CDRVES * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NOUNIT, A, LDA, H, HT, W, WT, VS, LDVS, RESULT, * WORK, NWORK, RWORK, IWORK, BWORK, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK * REAL THRESH * .. * .. Array Arguments .. * LOGICAL BWORK( * ), DOTYPE( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * REAL RESULT( 13 ), RWORK( * ) * COMPLEX A( LDA, * ), H( LDA, * ), HT( LDA, * ), * $ VS( LDVS, * ), W( * ), WORK( * ), WT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CDRVES checks the nonsymmetric eigenvalue (Schur form) problem *> driver CGEES. *> *> When CDRVES is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix will be generated and used *> to test the nonsymmetric eigenroutines. For each matrix, 13 *> tests will be performed: *> *> (1) 0 if T is in Schur form, 1/ulp otherwise *> (no sorting of eigenvalues) *> *> (2) | A - VS T VS' | / ( n |A| ulp ) *> *> Here VS is the matrix of Schur eigenvectors, and T is in Schur *> form (no sorting of eigenvalues). *> *> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). *> *> (4) 0 if W are eigenvalues of T *> 1/ulp otherwise *> (no sorting of eigenvalues) *> *> (5) 0 if T(with VS) = T(without VS), *> 1/ulp otherwise *> (no sorting of eigenvalues) *> *> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), *> 1/ulp otherwise *> (no sorting of eigenvalues) *> *> (7) 0 if T is in Schur form, 1/ulp otherwise *> (with sorting of eigenvalues) *> *> (8) | A - VS T VS' | / ( n |A| ulp ) *> *> Here VS is the matrix of Schur eigenvectors, and T is in Schur *> form (with sorting of eigenvalues). *> *> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). *> *> (10) 0 if W are eigenvalues of T *> 1/ulp otherwise *> (with sorting of eigenvalues) *> *> (11) 0 if T(with VS) = T(without VS), *> 1/ulp otherwise *> (with sorting of eigenvalues) *> *> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), *> 1/ulp otherwise *> (with sorting of eigenvalues) *> *> (13) if sorting worked and SDIM is the number of *> eigenvalues which were SELECTed *> *> The "sizes" are specified by an array NN(1:NSIZES); the value of *> each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> (3) A (transposed) Jordan block, with 1's on the diagonal. *> *> (4) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random complex angles. *> (ULP = (first number larger than 1) - 1 ) *> (5) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random complex angles. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random complex angles. *> *> (7) Same as (4), but multiplied by a constant near *> the overflow threshold *> (8) Same as (4), but multiplied by a constant near *> the underflow threshold *> *> (9) A matrix of the form U' T U, where U is unitary and *> T has evenly spaced entries 1, ..., ULP with random *> complex angles on the diagonal and random O(1) entries in *> the upper triangle. *> *> (10) A matrix of the form U' T U, where U is unitary and *> T has geometrically spaced entries 1, ..., ULP with random *> complex angles on the diagonal and random O(1) entries in *> the upper triangle. *> *> (11) A matrix of the form U' T U, where U is orthogonal and *> T has "clustered" entries 1, ULP,..., ULP with random *> complex angles on the diagonal and random O(1) entries in *> the upper triangle. *> *> (12) A matrix of the form U' T U, where U is unitary and *> T has complex eigenvalues randomly chosen from *> ULP < |z| < 1 and random O(1) entries in the upper *> triangle. *> *> (13) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP *> with random complex angles on the diagonal and random O(1) *> entries in the upper triangle. *> *> (14) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has geometrically spaced entries *> 1, ..., ULP with random complex angles on the diagonal *> and random O(1) entries in the upper triangle. *> *> (15) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP *> with random complex angles on the diagonal and random O(1) *> entries in the upper triangle. *> *> (16) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has complex eigenvalues randomly chosen *> from ULP < |z| < 1 and random O(1) entries in the upper *> triangle. *> *> (17) Same as (16), but multiplied by a constant *> near the overflow threshold *> (18) Same as (16), but multiplied by a constant *> near the underflow threshold *> *> (19) Nonsymmetric matrix with random entries chosen from (-1,1). *> If N is at least 4, all entries in first two rows and last *> row, and first column and last two columns are zero. *> (20) Same as (19), but multiplied by a constant *> near the overflow threshold *> (21) Same as (19), but multiplied by a constant *> near the underflow threshold *> \endverbatim * * Arguments: * ========== * *> \param[in] NSIZES *> \verbatim *> NSIZES is INTEGER *> The number of sizes of matrices to use. If it is zero, *> CDRVES does nothing. It must be at least zero. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> \endverbatim *> *> \param[in] NTYPES *> \verbatim *> NTYPES is INTEGER *> The number of elements in DOTYPE. If it is zero, CDRVES *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> \endverbatim *> *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to CDRVES to continue the same random number *> sequence. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] NOUNIT *> \verbatim *> NOUNIT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns INFO not equal to 0.) *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX array, dimension (LDA, max(NN)) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually used. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A, and H. LDA must be at *> least 1 and at least max( NN ). *> \endverbatim *> *> \param[out] H *> \verbatim *> H is COMPLEX array, dimension (LDA, max(NN)) *> Another copy of the test matrix A, modified by CGEES. *> \endverbatim *> *> \param[out] HT *> \verbatim *> HT is COMPLEX array, dimension (LDA, max(NN)) *> Yet another copy of the test matrix A, modified by CGEES. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is COMPLEX array, dimension (max(NN)) *> The computed eigenvalues of A. *> \endverbatim *> *> \param[out] WT *> \verbatim *> WT is COMPLEX array, dimension (max(NN)) *> Like W, this array contains the eigenvalues of A, *> but those computed when CGEES only computes a partial *> eigendecomposition, i.e. not Schur vectors *> \endverbatim *> *> \param[out] VS *> \verbatim *> VS is COMPLEX array, dimension (LDVS, max(NN)) *> VS holds the computed Schur vectors. *> \endverbatim *> *> \param[in] LDVS *> \verbatim *> LDVS is INTEGER *> Leading dimension of VS. Must be at least max(1,max(NN)). *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (13) *> The values computed by the 13 tests described above. *> The values are currently limited to 1/ulp, to avoid overflow. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (NWORK) *> \endverbatim *> *> \param[in] NWORK *> \verbatim *> NWORK is INTEGER *> The number of entries in WORK. This must be at least *> 5*NN(j)+2*NN(j)**2 for all j. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (max(NN)) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (max(NN)) *> \endverbatim *> *> \param[out] BWORK *> \verbatim *> BWORK is LOGICAL array, dimension (max(NN)) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some NN(j) < 0 *> -3: NTYPES < 0 *> -6: THRESH < 0 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). *> -15: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ). *> -18: NWORK too small. *> If CLATMR, CLATMS, CLATME or CGEES returns an error code, *> the absolute value of it is returned. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NMAX Largest value in NN. *> NERRS The number of tests which have exceeded THRESH *> COND, CONDS, *> IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTULP, RTULPI Square roots of the previous 4 values. *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> KCONDS(j) Select whether CONDS is to be 1 or *> 1/sqrt(ulp). (0 means irrelevant.) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NOUNIT, A, LDA, H, HT, W, WT, VS, LDVS, RESULT, $ WORK, NWORK, RWORK, IWORK, BWORK, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK REAL THRESH * .. * .. Array Arguments .. LOGICAL BWORK( * ), DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) REAL RESULT( 13 ), RWORK( * ) COMPLEX A( LDA, * ), H( LDA, * ), HT( LDA, * ), $ VS( LDVS, * ), W( * ), WORK( * ), WT( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CZERO PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) ) COMPLEX CONE PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) * .. * .. Local Scalars .. LOGICAL BADNN CHARACTER SORT CHARACTER*3 PATH INTEGER I, IINFO, IMODE, ISORT, ITYPE, IWK, J, JCOL, $ JSIZE, JTYPE, KNTEIG, LWORK, MTYPES, N, $ NERRS, NFAIL, NMAX, NNWORK, NTEST, NTESTF, $ NTESTT, RSUB, SDIM REAL ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP, $ ULPINV, UNFL * .. * .. Local Arrays .. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) REAL RES( 2 ) * .. * .. Arrays in Common .. LOGICAL SELVAL( 20 ) REAL SELWI( 20 ), SELWR( 20 ) * .. * .. Scalars in Common .. INTEGER SELDIM, SELOPT * .. * .. Common blocks .. COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI * .. * .. External Functions .. LOGICAL CSLECT REAL SLAMCH EXTERNAL CSLECT, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEES, CHST01, CLACPY, CLATME, CLATMR, CLATMS, $ CLASET, SLASUM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 / DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2, $ 3, 1, 2, 3 / DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3, $ 1, 5, 5, 5, 4, 3, 1 / DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 / * .. * .. Executable Statements .. * PATH( 1: 1 ) = 'Complex precision' PATH( 2: 3 ) = 'ES' * * Check for errors * NTESTT = 0 NTESTF = 0 INFO = 0 SELOPT = 0 * * Important constants * BADNN = .FALSE. NMAX = 0 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -6 ELSE IF( NOUNIT.LE.0 ) THEN INFO = -7 ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDVS.LT.1 .OR. LDVS.LT.NMAX ) THEN INFO = -15 ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN INFO = -18 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CDRVES', -INFO ) RETURN END IF * * Quick return if nothing to do * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More Important constants * UNFL = SLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL ULP = SLAMCH( 'Precision' ) ULPINV = ONE / ULP RTULP = SQRT( ULP ) RTULPI = ONE / RTULP * * Loop over sizes, types * NERRS = 0 * DO 240 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 230 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 230 * * Save ISEED in case of an error. * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * * Compute "A" * * Control parameters: * * KMAGN KCONDS KMODE KTYPE * =1 O(1) 1 clustered 1 zero * =2 large large clustered 2 identity * =3 small exponential Jordan * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log symmetric, w/ eigenvalues * =6 random general, w/ eigenvalues * =7 random diagonal * =8 random symmetric * =9 random general * =10 random triangular * IF( MTYPES.GT.MAXTYP ) $ GO TO 90 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 30, 40, 50 )KMAGN( JTYPE ) * 30 CONTINUE ANORM = ONE GO TO 60 * 40 CONTINUE ANORM = OVFL*ULP GO TO 60 * 50 CONTINUE ANORM = UNFL*ULPINV GO TO 60 * 60 CONTINUE * CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA ) IINFO = 0 COND = ULPINV * * Special Matrices -- Identity & Jordan block * IF( ITYPE.EQ.1 ) THEN * * Zero * IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 70 JCOL = 1, N A( JCOL, JCOL ) = CMPLX( ANORM ) 70 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * Jordan Block * DO 80 JCOL = 1, N A( JCOL, JCOL ) = CMPLX( ANORM ) IF( JCOL.GT.1 ) $ A( JCOL, JCOL-1 ) = CONE 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Symmetric, eigenvalues specified * CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.6 ) THEN * * General, eigenvalues specified * IF( KCONDS( JTYPE ).EQ.1 ) THEN CONDS = ONE ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN CONDS = RTULPI ELSE CONDS = ZERO END IF * CALL CLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE, $ 'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM, $ A, LDA, WORK( 2*N+1 ), IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Symmetric, random eigenvalues * CALL CLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * General, random eigenvalues * CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) IF( N.GE.4 ) THEN CALL CLASET( 'Full', 2, N, CZERO, CZERO, A, LDA ) CALL CLASET( 'Full', N-3, 1, CZERO, CZERO, A( 3, 1 ), $ LDA ) CALL CLASET( 'Full', N-3, 2, CZERO, CZERO, $ A( 3, N-1 ), LDA ) CALL CLASET( 'Full', 1, N, CZERO, CZERO, A( N, 1 ), $ LDA ) END IF * ELSE IF( ITYPE.EQ.10 ) THEN * * Triangular, random eigenvalues * CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 90 CONTINUE * * Test for minimal and generous workspace * DO 220 IWK = 1, 2 IF( IWK.EQ.1 ) THEN NNWORK = 3*N ELSE NNWORK = 5*N + 2*N**2 END IF NNWORK = MAX( NNWORK, 1 ) * * Initialize RESULT * DO 100 J = 1, 13 RESULT( J ) = -ONE 100 CONTINUE * * Test with and without sorting of eigenvalues * DO 180 ISORT = 0, 1 IF( ISORT.EQ.0 ) THEN SORT = 'N' RSUB = 0 ELSE SORT = 'S' RSUB = 6 END IF * * Compute Schur form and Schur vectors, and test them * CALL CLACPY( 'F', N, N, A, LDA, H, LDA ) CALL CGEES( 'V', SORT, CSLECT, N, H, LDA, SDIM, W, VS, $ LDVS, WORK, NNWORK, RWORK, BWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1+RSUB ) = ULPINV WRITE( NOUNIT, FMT = 9992 )'CGEES1', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 190 END IF * * Do Test (1) or Test (7) * RESULT( 1+RSUB ) = ZERO DO 120 J = 1, N - 1 DO 110 I = J + 1, N IF( H( I, J ).NE.ZERO ) $ RESULT( 1+RSUB ) = ULPINV 110 CONTINUE 120 CONTINUE * * Do Tests (2) and (3) or Tests (8) and (9) * LWORK = MAX( 1, 2*N*N ) CALL CHST01( N, 1, N, A, LDA, H, LDA, VS, LDVS, WORK, $ LWORK, RWORK, RES ) RESULT( 2+RSUB ) = RES( 1 ) RESULT( 3+RSUB ) = RES( 2 ) * * Do Test (4) or Test (10) * RESULT( 4+RSUB ) = ZERO DO 130 I = 1, N IF( H( I, I ).NE.W( I ) ) $ RESULT( 4+RSUB ) = ULPINV 130 CONTINUE * * Do Test (5) or Test (11) * CALL CLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL CGEES( 'N', SORT, CSLECT, N, HT, LDA, SDIM, WT, $ VS, LDVS, WORK, NNWORK, RWORK, BWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 5+RSUB ) = ULPINV WRITE( NOUNIT, FMT = 9992 )'CGEES2', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 190 END IF * RESULT( 5+RSUB ) = ZERO DO 150 J = 1, N DO 140 I = 1, N IF( H( I, J ).NE.HT( I, J ) ) $ RESULT( 5+RSUB ) = ULPINV 140 CONTINUE 150 CONTINUE * * Do Test (6) or Test (12) * RESULT( 6+RSUB ) = ZERO DO 160 I = 1, N IF( W( I ).NE.WT( I ) ) $ RESULT( 6+RSUB ) = ULPINV 160 CONTINUE * * Do Test (13) * IF( ISORT.EQ.1 ) THEN RESULT( 13 ) = ZERO KNTEIG = 0 DO 170 I = 1, N IF( CSLECT( W( I ) ) ) $ KNTEIG = KNTEIG + 1 IF( I.LT.N ) THEN IF( CSLECT( W( I+1 ) ) .AND. $ ( .NOT.CSLECT( W( I ) ) ) )RESULT( 13 ) $ = ULPINV END IF 170 CONTINUE IF( SDIM.NE.KNTEIG ) $ RESULT( 13 ) = ULPINV END IF * 180 CONTINUE * * End of Loop -- Check for RESULT(j) > THRESH * 190 CONTINUE * NTEST = 0 NFAIL = 0 DO 200 J = 1, 13 IF( RESULT( J ).GE.ZERO ) $ NTEST = NTEST + 1 IF( RESULT( J ).GE.THRESH ) $ NFAIL = NFAIL + 1 200 CONTINUE * IF( NFAIL.GT.0 ) $ NTESTF = NTESTF + 1 IF( NTESTF.EQ.1 ) THEN WRITE( NOUNIT, FMT = 9999 )PATH WRITE( NOUNIT, FMT = 9998 ) WRITE( NOUNIT, FMT = 9997 ) WRITE( NOUNIT, FMT = 9996 ) WRITE( NOUNIT, FMT = 9995 )THRESH WRITE( NOUNIT, FMT = 9994 ) NTESTF = 2 END IF * DO 210 J = 1, 13 IF( RESULT( J ).GE.THRESH ) THEN WRITE( NOUNIT, FMT = 9993 )N, IWK, IOLDSD, JTYPE, $ J, RESULT( J ) END IF 210 CONTINUE * NERRS = NERRS + NFAIL NTESTT = NTESTT + NTEST * 220 CONTINUE 230 CONTINUE 240 CONTINUE * * Summary * CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT ) * 9999 FORMAT( / 1X, A3, ' -- Complex Schur Form Decomposition Driver', $ / ' Matrix types (see CDRVES for details): ' ) * 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', $ ' ', ' 5=Diagonal: geometr. spaced entries.', $ / ' 2=Identity matrix. ', ' 6=Diagona', $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ', $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ', $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s', $ 'mall, evenly spaced.' ) 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev', $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e', $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ', $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond', $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp', $ 'lex ', A6, / ' 12=Well-cond., random complex ', A6, ' ', $ ' 17=Ill-cond., large rand. complx ', A4, / ' 13=Ill-condi', $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.', $ ' complx ', A4 ) 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ', $ 'with small random entries.', / ' 20=Matrix with large ran', $ 'dom entries. ', / ) 9995 FORMAT( ' Tests performed with test threshold =', F8.2, $ / ' ( A denotes A on input and T denotes A on output)', $ / / ' 1 = 0 if T in Schur form (no sort), ', $ ' 1/ulp otherwise', / $ ' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)', $ / ' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ', $ / ' 4 = 0 if W are eigenvalues of T (no sort),', $ ' 1/ulp otherwise', / $ ' 5 = 0 if T same no matter if VS computed (no sort),', $ ' 1/ulp otherwise', / $ ' 6 = 0 if W same no matter if VS computed (no sort)', $ ', 1/ulp otherwise' ) 9994 FORMAT( ' 7 = 0 if T in Schur form (sort), ', ' 1/ulp otherwise', $ / ' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)', $ / ' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ', $ / ' 10 = 0 if W are eigenvalues of T (sort),', $ ' 1/ulp otherwise', / $ ' 11 = 0 if T same no matter if VS computed (sort),', $ ' 1/ulp otherwise', / $ ' 12 = 0 if W same no matter if VS computed (sort),', $ ' 1/ulp otherwise', / $ ' 13 = 0 if sorting successful, 1/ulp otherwise', / ) 9993 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ), $ ' type ', I2, ', test(', I2, ')=', G10.3 ) 9992 FORMAT( ' CDRVES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * RETURN * * End of CDRVES * END