*> \brief \b DGET40 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DGET40( RMAX, LMAX, NINFO, KNT, NIN ) * * .. Scalar Arguments .. * INTEGER KNT, LMAX, NIN * DOUBLE PRECISION RMAX * .. * .. Array Arguments .. * INTEGER NINFO( 2 ) * * *> \par Purpose: * ============= *> *> \verbatim *> *> DGET40 tests DTGEXC, a routine for swapping adjacent blocks (either *> 1 by 1 or 2 by 2) on the diagonal of a pencil in real generalized Schur form. *> Thus, DTGEXC computes an orthogonal matrices Q and Z such that *> *> Q' * ( [ A B ], [ D E ] ) * Z = ( [ C1 B1 ], [ F1 E1 ] ) *> ( [ 0 C ] [ F ] ) ( [ 0 A1 ] [ D1] ) *> *> where (C1,F1) is similar to (C,F) and (A1,D1) is similar to (A,D). *> Both (A,D) and (C,F) are assumed to be in standard form *> and (A1,D1) and (C1,F1) are returned with the *> same properties. *> \endverbatim * * Arguments: * ========== * *> \param[out] RMAX *> \verbatim *> RMAX is DOUBLE PRECISION *> Value of the largest test ratio. *> \endverbatim *> *> \param[out] LMAX *> \verbatim *> LMAX is INTEGER *> Example number where largest test ratio achieved. *> \endverbatim *> *> \param[out] NINFO *> \verbatim *> NINFO is INTEGER array, dimension (2) *> NINFO( 1 ) = DTGEXC without accumulation returned INFO nonzero *> NINFO( 2 ) = DTGEXC with accumulation returned INFO nonzero *> \endverbatim *> *> \param[out] KNT *> \verbatim *> KNT is INTEGER *> Total number of examples tested. *> \endverbatim *> *> \param[in] NIN *> \verbatim *> NIN is INTEGER *> Input logical unit number. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DGET40( RMAX, LMAX, NINFO, KNT, NIN ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER KNT, LMAX, NIN DOUBLE PRECISION RMAX * .. * .. Array Arguments .. INTEGER NINFO( 2 ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) INTEGER LDT, LWORK PARAMETER ( LDT = 10, LWORK = 100 + 4*LDT + 16 ) * .. * .. Local Scalars .. INTEGER I, IFST, IFST1, IFST2, IFSTSV, ILST, ILST1, $ ILST2, ILSTSV, J, LOC, N DOUBLE PRECISION EPS, RES * .. * .. Local Arrays .. DOUBLE PRECISION Q( LDT, LDT ), Z( LDT, LDT ), RESULT( 4 ), $ T( LDT, LDT ), T1( LDT, LDT ), T2( LDT, LDT ), $ S( LDT, LDT ), S1( LDT, LDT ), S2( LDT, LDT ), $ TMP( LDT, LDT ), WORK( LWORK ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL DHST01, DLACPY, DLASET, DTGEXC * .. * .. Intrinsic Functions .. INTRINSIC ABS, SIGN * .. * .. Executable Statements .. * EPS = DLAMCH( 'P' ) RMAX = ZERO LMAX = 0 KNT = 0 NINFO( 1 ) = 0 NINFO( 2 ) = 0 * * Read input data until N=0 * 10 CONTINUE READ( NIN, FMT = * )N, IFST, ILST IF( N.EQ.0 ) $ RETURN KNT = KNT + 1 DO 20 I = 1, N READ( NIN, FMT = * )( TMP( I, J ), J = 1, N ) 20 CONTINUE CALL DLACPY( 'F', N, N, TMP, LDT, T, LDT ) CALL DLACPY( 'F', N, N, TMP, LDT, T1, LDT ) CALL DLACPY( 'F', N, N, TMP, LDT, T2, LDT ) DO 25 I = 1, N READ( NIN, FMT = * )( TMP( I, J ), J = 1, N ) 25 CONTINUE CALL DLACPY( 'F', N, N, TMP, LDT, S, LDT ) CALL DLACPY( 'F', N, N, TMP, LDT, S1, LDT ) CALL DLACPY( 'F', N, N, TMP, LDT, S2, LDT ) IFSTSV = IFST ILSTSV = ILST IFST1 = IFST ILST1 = ILST IFST2 = IFST ILST2 = ILST RES = ZERO * * Test without accumulating Q and Z * CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT ) CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDT ) CALL DTGEXC( .FALSE., .FALSE., N, T1, LDT, S1, LDT, Q, LDT, $ Z, LDT, IFST1, ILST1, WORK, LWORK, NINFO ( 1 ) ) DO 40 I = 1, N DO 30 J = 1, N IF( I.EQ.J .AND. Q( I, J ).NE.ONE ) $ RES = RES + ONE / EPS IF( I.NE.J .AND. Q( I, J ).NE.ZERO ) $ RES = RES + ONE / EPS IF( I.EQ.J .AND. Z( I, J ).NE.ONE ) $ RES = RES + ONE / EPS IF( I.NE.J .AND. Z( I, J ).NE.ZERO ) $ RES = RES + ONE / EPS 30 CONTINUE 40 CONTINUE * * Test with accumulating Q * CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT ) CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDT ) CALL DTGEXC( .TRUE., .TRUE., N, T2, LDT, S2, LDT, Q, LDT, $ Z, LDT, IFST2, ILST2, WORK, LWORK, NINFO ( 2 ) ) * * Compare T1 with T2 and S1 with S2 * DO 60 I = 1, N DO 50 J = 1, N IF( T1( I, J ).NE.T2( I, J ) ) $ RES = RES + ONE / EPS IF( S1( I, J ).NE.S2( I, J ) ) $ RES = RES + ONE / EPS 50 CONTINUE 60 CONTINUE IF( IFST1.NE.IFST2 ) $ RES = RES + ONE / EPS IF( ILST1.NE.ILST2 ) $ RES = RES + ONE / EPS IF( NINFO( 1 ).NE.NINFO( 2 ) ) $ RES = RES + ONE / EPS * * Test orthogonality of Q and Z and backward error on T2 and S2 * CALL DGET51( 1, N, T, LDT, T2, LDT, Q, LDT, Z, LDT, WORK, $ RESULT( 1 ) ) CALL DGET51( 1, N, S, LDT, S2, LDT, Q, LDT, Z, LDT, WORK, $ RESULT( 2 ) ) CALL DGET51( 3, N, T, LDT, T2, LDT, Q, LDT, Q, LDT, WORK, $ RESULT( 3 ) ) CALL DGET51( 3, N, T, LDT, T2, LDT, Z, LDT, Z, LDT, WORK, $ RESULT( 4 ) ) RES = RES + RESULT( 1 ) + RESULT( 2 ) + RESULT( 3 ) + RESULT( 4 ) * * Read next matrix pair * GO TO 10 * * End of DGET40 * END