*> \brief \b CERRHE * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CERRHE( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CERRHE tests the error exits for the COMPLEX routines *> for Hermitian indefinite matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CERRHE( PATH, NUNIT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO, J REAL ANRM, RCOND * .. * .. Local Arrays .. INTEGER IP( NMAX ) REAL R( NMAX ), R1( NMAX ), R2( NMAX ) COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ E( NMAX ), W( 2*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHECON, CSYCON_3, CHECON_ROOK, CHERFS, $ CHETF2, CHETF2_RK, CHETF2_ROOK, CHETRF_AA, $ CHETRF, CHETRF_RK, CHETRF_ROOK, CHETRI, $ CHETRI_3, CHETRI_3X, CHETRI_ROOK, CHETRI2, $ CHETRI2X, CHETRS, CHETRS_3, CHETRS_ROOK, $ CHETRS_AA, CHKXER, CHPCON, CHPRFS, CHPTRF, $ CHETRF_AA_2STAGE, CHETRS_AA_2STAGE, $ CHPTRI, CHPTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, REAL * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) AF( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) 10 CONTINUE B( J ) = 0.E+0 E( J ) = 0.E+0 R1( J ) = 0.E+0 R2( J ) = 0.E+0 W( J ) = 0.E+0 X( J ) = 0.E+0 IP( J ) = J 20 CONTINUE ANRM = 1.0 OK = .TRUE. * IF( LSAMEN( 2, C2, 'HE' ) ) THEN * * Test error exits of the routines that use factorization * of a Hermitian indefinite matrix with partial * (Bunch-Kaufman) diagonal pivoting method. * * CHETRF * SRNAMT = 'CHETRF' INFOT = 1 CALL CHETRF( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRF( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRF( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHETRF( 'U', 0, A, 1, IP, W, 0, INFO ) CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHETRF( 'U', 0, A, 1, IP, W, -2, INFO ) CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK ) * * CHETF2 * SRNAMT = 'CHETF2' INFOT = 1 CALL CHETF2( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETF2( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETF2( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK ) * * CHETRI * SRNAMT = 'CHETRI' INFOT = 1 CALL CHETRI( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRI( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRI( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK ) * * CHETRI2 * SRNAMT = 'CHETRI2' INFOT = 1 CALL CHETRI2( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRI2( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRI2( 'U', 2, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK ) * * CHETRI2X * SRNAMT = 'CHETRI2X' INFOT = 1 CALL CHETRI2X( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI2X', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRI2X( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI2X', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRI2X( 'U', 2, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI2X', INFOT, NOUT, LERR, OK ) * * CHETRS * SRNAMT = 'CHETRS' INFOT = 1 CALL CHETRS( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRS( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHETRS( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHETRS( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHETRS( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) * * CHERFS * SRNAMT = 'CHERFS' INFOT = 1 CALL CHERFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHERFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHERFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) * * CHECON * SRNAMT = 'CHECON' INFOT = 1 CALL CHECON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHECON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHECON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHECON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'HR' ) ) THEN * * Test error exits of the routines that use factorization * of a Hermitian indefinite matrix with rook * (bounded Bunch-Kaufman) diagonal pivoting method. * * CHETRF_ROOK * SRNAMT = 'CHETRF_ROOK' INFOT = 1 CALL CHETRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHETRF_ROOK( 'U', 0, A, 1, IP, W, 0, INFO ) CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHETRF_ROOK( 'U', 0, A, 1, IP, W, -2, INFO ) CALL CHKXER( 'CHETRF_ROOK', INFOT, NOUT, LERR, OK ) * * CHETF2_ROOK * SRNAMT = 'CHETF2_ROOK' INFOT = 1 CALL CHETF2_ROOK( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'CHETF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETF2_ROOK( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'CHETF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETF2_ROOK( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'CHETF2_ROOK', INFOT, NOUT, LERR, OK ) * * CHETRI_ROOK * SRNAMT = 'CHETRI_ROOK' INFOT = 1 CALL CHETRI_ROOK( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'CHETRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRI_ROOK( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'CHETRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRI_ROOK( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'CHETRI_ROOK', INFOT, NOUT, LERR, OK ) * * CHETRS_ROOK * SRNAMT = 'CHETRS_ROOK' INFOT = 1 CALL CHETRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHETRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHETRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHETRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS_ROOK', INFOT, NOUT, LERR, OK ) * * CHECON_ROOK * SRNAMT = 'CHECON_ROOK' INFOT = 1 CALL CHECON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHECON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHECON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHECON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON_ROOK', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'HK' ) ) THEN * * Test error exits of the routines that use factorization * of a Hermitian indefinite matrix with rook * (bounded Bunch-Kaufman) pivoting with the new storage * format for factors L ( or U) and D. * * L (or U) is stored in A, diagonal of D is stored on the * diagonal of A, subdiagonal of D is stored in a separate array E. * * CHETRF_RK * SRNAMT = 'CHETRF_RK' INFOT = 1 CALL CHETRF_RK( '/', 0, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRF_RK( 'U', -1, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRF_RK( 'U', 2, A, 1, E, IP, W, 4, INFO ) CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHETRF_RK( 'U', 0, A, 1, E, IP, W, 0, INFO ) CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHETRF_RK( 'U', 0, A, 1, E, IP, W, -2, INFO ) CALL CHKXER( 'CHETRF_RK', INFOT, NOUT, LERR, OK ) * * CHETF2_RK * SRNAMT = 'CHETF2_RK' INFOT = 1 CALL CHETF2_RK( '/', 0, A, 1, E, IP, INFO ) CALL CHKXER( 'CHETF2_RK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETF2_RK( 'U', -1, A, 1, E, IP, INFO ) CALL CHKXER( 'CHETF2_RK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETF2_RK( 'U', 2, A, 1, E, IP, INFO ) CALL CHKXER( 'CHETF2_RK', INFOT, NOUT, LERR, OK ) * * CHETRI_3 * SRNAMT = 'CHETRI_3' INFOT = 1 CALL CHETRI_3( '/', 0, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRI_3( 'U', -1, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRI_3( 'U', 2, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHETRI_3( 'U', 0, A, 1, E, IP, W, 0, INFO ) CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHETRI_3( 'U', 0, A, 1, E, IP, W, -2, INFO ) CALL CHKXER( 'CHETRI_3', INFOT, NOUT, LERR, OK ) * * CHETRI_3X * SRNAMT = 'CHETRI_3X' INFOT = 1 CALL CHETRI_3X( '/', 0, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI_3X', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRI_3X( 'U', -1, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI_3X', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRI_3X( 'U', 2, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CHETRI_3X', INFOT, NOUT, LERR, OK ) * * CHETRS_3 * SRNAMT = 'CHETRS_3' INFOT = 1 CALL CHETRS_3( '/', 0, 0, A, 1, E, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRS_3( 'U', -1, 0, A, 1, E, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHETRS_3( 'U', 0, -1, A, 1, E, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHETRS_3( 'U', 2, 1, A, 1, E, IP, B, 2, INFO ) CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHETRS_3( 'U', 2, 1, A, 2, E, IP, B, 1, INFO ) CALL CHKXER( 'CHETRS_3', INFOT, NOUT, LERR, OK ) * * CHECON_3 * SRNAMT = 'CHECON_3' INFOT = 1 CALL CHECON_3( '/', 0, A, 1, E, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON_3', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHECON_3( 'U', -1, A, 1, E, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON_3', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHECON_3( 'U', 2, A, 1, E, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHECON_3', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHECON_3( 'U', 1, A, 1, E, IP, -1.0E0, RCOND, W, INFO) CALL CHKXER( 'CHECON_3', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'HA' ) ) THEN * * Test error exits of the routines that use factorization * of a Hermitian indefinite matrix with Aasen's algorithm. * * CHETRF_AA * SRNAMT = 'CHETRF_AA' INFOT = 1 CALL CHETRF_AA( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRF_AA( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRF_AA( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHETRF_AA( 'U', 2, A, 2, IP, W, 0, INFO ) CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHETRF_AA( 'U', 2, A, 2, IP, W, -2, INFO ) CALL CHKXER( 'CHETRF_AA', INFOT, NOUT, LERR, OK ) * * CHETRS_AA * SRNAMT = 'CHETRS_AA' INFOT = 1 CALL CHETRS_AA( '/', 0, 0, A, 1, IP, B, 1, W, 1, INFO ) CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRS_AA( 'U', -1, 0, A, 1, IP, B, 1, W, 1, INFO ) CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHETRS_AA( 'U', 0, -1, A, 1, IP, B, 1, W, 1, INFO ) CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHETRS_AA( 'U', 2, 1, A, 1, IP, B, 2, W, 1, INFO ) CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHETRS_AA( 'U', 2, 1, A, 2, IP, B, 1, W, 1, INFO ) CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHETRS_AA( 'U', 2, 1, A, 2, IP, B, 2, W, 0, INFO ) CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHETRS_AA( 'U', 2, 1, A, 2, IP, B, 2, W, -2, INFO ) CALL CHKXER( 'CHETRS_AA', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'H2' ) ) THEN * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with Aasen's algorithm. * * CHETRF_AA_2STAGE * SRNAMT = 'CHETRF_AA_2STAGE' INFOT = 1 CALL CHETRF_AA_2STAGE( '/', 0, A, 1, A, 1, IP, IP, W, 1, $ INFO ) CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRF_AA_2STAGE( 'U', -1, A, 1, A, 1, IP, IP, W, 1, $ INFO ) CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRF_AA_2STAGE( 'U', 2, A, 1, A, 2, IP, IP, W, 1, $ INFO ) CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHETRF_AA_2STAGE( 'U', 2, A, 2, A, 1, IP, IP, W, 1, $ INFO ) CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHETRF_AA_2STAGE( 'U', 2, A, 2, A, 8, IP, IP, W, 0, $ INFO ) CALL CHKXER( 'CHETRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) * * CHETRS_AA_2STAGE * SRNAMT = 'CHETRS_AA_2STAGE' INFOT = 1 CALL CHETRS_AA_2STAGE( '/', 0, 0, A, 1, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRS_AA_2STAGE( 'U', -1, 0, A, 1, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHETRS_AA_2STAGE( 'U', 0, -1, A, 1, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHETRS_AA_2STAGE( 'U', 2, 1, A, 1, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHETRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CHETRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHETRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 8, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CHETRS_AA_STAGE', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use factorization * of a Hermitian indefinite packed matrix with partial * (Bunch-Kaufman) diagonal pivoting method. * ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN * * CHPTRF * SRNAMT = 'CHPTRF' INFOT = 1 CALL CHPTRF( '/', 0, A, IP, INFO ) CALL CHKXER( 'CHPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPTRF( 'U', -1, A, IP, INFO ) CALL CHKXER( 'CHPTRF', INFOT, NOUT, LERR, OK ) * * CHPTRI * SRNAMT = 'CHPTRI' INFOT = 1 CALL CHPTRI( '/', 0, A, IP, W, INFO ) CALL CHKXER( 'CHPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPTRI( 'U', -1, A, IP, W, INFO ) CALL CHKXER( 'CHPTRI', INFOT, NOUT, LERR, OK ) * * CHPTRS * SRNAMT = 'CHPTRS' INFOT = 1 CALL CHPTRS( '/', 0, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPTRS( 'U', -1, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHPTRS( 'U', 0, -1, A, IP, B, 1, INFO ) CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHPTRS( 'U', 2, 1, A, IP, B, 1, INFO ) CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK ) * * CHPRFS * SRNAMT = 'CHPRFS' INFOT = 1 CALL CHPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) * * CHPCON * SRNAMT = 'CHPCON' INFOT = 1 CALL CHPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of CERRHE * END