*> \brief \b CERRSY * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CERRSY( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CERRSY tests the error exits for the COMPLEX routines *> for symmetric indefinite matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CERRSY( PATH, NUNIT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO, J REAL ANRM, RCOND * .. * .. Local Arrays .. INTEGER IP( NMAX ) REAL R( NMAX ), R1( NMAX ), R2( NMAX ) COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ E( NMAX), W( 2*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, CSPCON, CSPRFS, CSPTRF, CSPTRI, $ CSPTRS, CSYCON, CSYCON_3, CSYCON_ROOK, CSYRFS, $ CSYTF2, CSYTF2_RK, CSYTF2_ROOK, CSYTRF, $ CSYTRF_RK, CSYTRF_ROOK, CSYTRI, CSYTRI_3, $ CSYTRI_3X, CSYTRI_ROOK, CSYTRI2, CSYTRI2X, $ CSYTRS, CSYTRS_3, CSYTRS_ROOK * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, REAL * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) AF( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) 10 CONTINUE B( J ) = 0.E0 E( J ) = 0.E0 R1( J ) = 0.E0 R2( J ) = 0.E0 W( J ) = 0.E0 X( J ) = 0.E0 IP( J ) = J 20 CONTINUE ANRM = 1.0 OK = .TRUE. * IF( LSAMEN( 2, C2, 'SY' ) ) THEN * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with partial * (Bunch-Kaufman) diagonal pivoting method. * * CSYTRF * SRNAMT = 'CSYTRF' INFOT = 1 CALL CSYTRF( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRF( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRF( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYTRF( 'U', 0, A, 1, IP, W, 0, INFO ) CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYTRF( 'U', 0, A, 1, IP, W, -2, INFO ) CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK ) * * CSYTF2 * SRNAMT = 'CSYTF2' INFOT = 1 CALL CSYTF2( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTF2( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTF2( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK ) * * CSYTRI * SRNAMT = 'CSYTRI' INFOT = 1 CALL CSYTRI( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK ) * * CSYTRI2 * SRNAMT = 'CSYTRI2' INFOT = 1 CALL CSYTRI2( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI2( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI2( 'U', 2, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK ) * * CSYTRI2X * SRNAMT = 'CSYTRI2X' INFOT = 1 CALL CSYTRI2X( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2X', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI2X( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2X', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI2X( 'U', 2, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2X', INFOT, NOUT, LERR, OK ) * * CSYTRS * SRNAMT = 'CSYTRS' INFOT = 1 CALL CSYTRS( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRS( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYTRS( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYTRS( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRS( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) * * CSYRFS * SRNAMT = 'CSYRFS' INFOT = 1 CALL CSYRFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYRFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYRFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) * * CSYCON * SRNAMT = 'CSYCON' INFOT = 1 CALL CSYCON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYCON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYCON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CSYCON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with rook * (bounded Bunch-Kaufman) diagonal pivoting method. * * CSYTRF_ROOK * SRNAMT = 'CSYTRF_ROOK' INFOT = 1 CALL CSYTRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYTRF_ROOK( 'U', 0, A, 1, IP, W, 0, INFO ) CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYTRF_ROOK( 'U', 0, A, 1, IP, W, -2, INFO ) CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK ) * * CSYTF2_ROOK * SRNAMT = 'CSYTF2_ROOK' INFOT = 1 CALL CSYTF2_ROOK( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTF2_ROOK( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTF2_ROOK( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK ) * * CSYTRI_ROOK * SRNAMT = 'CSYTRI_ROOK' INFOT = 1 CALL CSYTRI_ROOK( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI_ROOK( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI_ROOK( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK ) * * CSYTRS_ROOK * SRNAMT = 'CSYTRS_ROOK' INFOT = 1 CALL CSYTRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYTRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYTRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) * * CSYCON_ROOK * SRNAMT = 'CSYCON_ROOK' INFOT = 1 CALL CSYCON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYCON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYCON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CSYCON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'SK' ) ) THEN * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with rook * (bounded Bunch-Kaufman) pivoting with the new storage * format for factors L ( or U) and D. * * L (or U) is stored in A, diagonal of D is stored on the * diagonal of A, subdiagonal of D is stored in a separate array E. * * CSYTRF_RK * SRNAMT = 'CSYTRF_RK' INFOT = 1 CALL CSYTRF_RK( '/', 0, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRF_RK( 'U', -1, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRF_RK( 'U', 2, A, 1, E, IP, W, 4, INFO ) CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRF_RK( 'U', 0, A, 1, E, IP, W, 0, INFO ) CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRF_RK( 'U', 0, A, 1, E, IP, W, -2, INFO ) CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK ) * * CSYTF2_RK * SRNAMT = 'CSYTF2_RK' INFOT = 1 CALL CSYTF2_RK( '/', 0, A, 1, E, IP, INFO ) CALL CHKXER( 'CSYTF2_RK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTF2_RK( 'U', -1, A, 1, E, IP, INFO ) CALL CHKXER( 'CSYTF2_RK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTF2_RK( 'U', 2, A, 1, E, IP, INFO ) CALL CHKXER( 'CSYTF2_RK', INFOT, NOUT, LERR, OK ) * * CSYTRI_3 * SRNAMT = 'CSYTRI_3' INFOT = 1 CALL CSYTRI_3( '/', 0, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI_3( 'U', -1, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI_3( 'U', 2, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRI_3( 'U', 0, A, 1, E, IP, W, 0, INFO ) CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRI_3( 'U', 0, A, 1, E, IP, W, -2, INFO ) CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK ) * * CSYTRI_3X * SRNAMT = 'CSYTRI_3X' INFOT = 1 CALL CSYTRI_3X( '/', 0, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI_3X', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI_3X( 'U', -1, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI_3X', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI_3X( 'U', 2, A, 1, E, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI_3X', INFOT, NOUT, LERR, OK ) * * CSYTRS_3 * SRNAMT = 'CSYTRS_3' INFOT = 1 CALL CSYTRS_3( '/', 0, 0, A, 1, E, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRS_3( 'U', -1, 0, A, 1, E, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYTRS_3( 'U', 0, -1, A, 1, E, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYTRS_3( 'U', 2, 1, A, 1, E, IP, B, 2, INFO ) CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYTRS_3( 'U', 2, 1, A, 2, E, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK ) * * CSYCON_3 * SRNAMT = 'CSYCON_3' INFOT = 1 CALL CSYCON_3( '/', 0, A, 1, E, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_3', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYCON_3( 'U', -1, A, 1, E, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_3', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYCON_3( 'U', 2, A, 1, E, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_3', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYCON_3( 'U', 1, A, 1, E, IP, -1.0E0, RCOND, W, INFO) CALL CHKXER( 'CSYCON_3', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN * * Test error exits of the routines that use factorization * of a symmetric indefinite packed matrix with partial * (Bunch-Kaufman) diagonal pivoting method. * * CSPTRF * SRNAMT = 'CSPTRF' INFOT = 1 CALL CSPTRF( '/', 0, A, IP, INFO ) CALL CHKXER( 'CSPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPTRF( 'U', -1, A, IP, INFO ) CALL CHKXER( 'CSPTRF', INFOT, NOUT, LERR, OK ) * * CSPTRI * SRNAMT = 'CSPTRI' INFOT = 1 CALL CSPTRI( '/', 0, A, IP, W, INFO ) CALL CHKXER( 'CSPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPTRI( 'U', -1, A, IP, W, INFO ) CALL CHKXER( 'CSPTRI', INFOT, NOUT, LERR, OK ) * * CSPTRS * SRNAMT = 'CSPTRS' INFOT = 1 CALL CSPTRS( '/', 0, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPTRS( 'U', -1, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSPTRS( 'U', 0, -1, A, IP, B, 1, INFO ) CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSPTRS( 'U', 2, 1, A, IP, B, 1, INFO ) CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK ) * * CSPRFS * SRNAMT = 'CSPRFS' INFOT = 1 CALL CSPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) * * CSPCON * SRNAMT = 'CSPCON' INFOT = 1 CALL CSPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'SA' ) ) THEN * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with Aasen's algorithm * * CSYTRF_AA * SRNAMT = 'CSYTRF_AA' INFOT = 1 CALL CSYTRF_AA( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRF_AA( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRF_AA( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYTRF_AA( 'U', 0, A, 1, IP, W, 0, INFO ) CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYTRF_AA( 'U', 0, A, 1, IP, W, -2, INFO ) CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK ) * * CSYTRS_AA * SRNAMT = 'CSYTRS_AA' INFOT = 1 CALL CSYTRS_AA( '/', 0, 0, A, 1, IP, B, 1, W, 1, INFO ) CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRS_AA( 'U', -1, 0, A, 1, IP, B, 1, W, 1, INFO ) CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYTRS_AA( 'U', 0, -1, A, 1, IP, B, 1, W, 1, INFO ) CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYTRS_AA( 'U', 2, 1, A, 1, IP, B, 2, W, 1, INFO ) CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRS_AA( 'U', 2, 1, A, 2, IP, B, 1, W, 1, INFO ) CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYTRS_AA( 'U', 0, 1, A, 1, IP, B, 1, W, 0, INFO ) CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYTRS_AA( 'U', 0, 1, A, 1, IP, B, 1, W, -2, INFO ) CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'S2' ) ) THEN * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with Aasen's algorithm. * * CSYTRF_AA_2STAGE * SRNAMT = 'CSYTRF_AA_2STAGE' INFOT = 1 CALL CSYTRF_AA_2STAGE( '/', 0, A, 1, A, 1, IP, IP, W, 1, $ INFO ) CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRF_AA_2STAGE( 'U', -1, A, 1, A, 1, IP, IP, W, 1, $ INFO ) CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRF_AA_2STAGE( 'U', 2, A, 1, A, 2, IP, IP, W, 1, $ INFO ) CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 1, IP, IP, W, 1, $ INFO ) CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 8, IP, IP, W, 0, $ INFO ) CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK ) * * CHETRS_AA_2STAGE * SRNAMT = 'CSYTRS_AA_2STAGE' INFOT = 1 CALL CSYTRS_AA_2STAGE( '/', 0, 0, A, 1, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRS_AA_2STAGE( 'U', -1, 0, A, 1, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYTRS_AA_2STAGE( 'U', 0, -1, A, 1, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYTRS_AA_2STAGE( 'U', 2, 1, A, 1, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 1, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 8, IP, IP, $ B, 1, INFO ) CALL CHKXER( 'CSYTRS_AA_STAGE', INFOT, NOUT, LERR, OK ) * END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of CERRSY * END