*> \brief \b ZDRVRF3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZDRVRF3( NOUT, NN, NVAL, THRESH, A, LDA, ARF, B1, B2, * + D_WORK_ZLANGE, Z_WORK_ZGEQRF, TAU ) * * .. Scalar Arguments .. * INTEGER LDA, NN, NOUT * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * INTEGER NVAL( NN ) * DOUBLE PRECISION D_WORK_ZLANGE( * ) * COMPLEX*16 A( LDA, * ), ARF( * ), B1( LDA, * ), * + B2( LDA, * ) * COMPLEX*16 Z_WORK_ZGEQRF( * ), TAU( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZDRVRF3 tests the LAPACK RFP routines: *> ZTFSM *> \endverbatim * * Arguments: * ========== * *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,NMAX) *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,NMAX). *> \endverbatim *> *> \param[out] ARF *> \verbatim *> ARF is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2). *> \endverbatim *> *> \param[out] B1 *> \verbatim *> B1 is COMPLEX*16 array, dimension (LDA,NMAX) *> \endverbatim *> *> \param[out] B2 *> \verbatim *> B2 is COMPLEX*16 array, dimension (LDA,NMAX) *> \endverbatim *> *> \param[out] D_WORK_ZLANGE *> \verbatim *> D_WORK_ZLANGE is DOUBLE PRECISION array, dimension (NMAX) *> \endverbatim *> *> \param[out] Z_WORK_ZGEQRF *> \verbatim *> Z_WORK_ZGEQRF is COMPLEX*16 array, dimension (NMAX) *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is COMPLEX*16 array, dimension (NMAX) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZDRVRF3( NOUT, NN, NVAL, THRESH, A, LDA, ARF, B1, B2, + D_WORK_ZLANGE, Z_WORK_ZGEQRF, TAU ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER LDA, NN, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. INTEGER NVAL( NN ) DOUBLE PRECISION D_WORK_ZLANGE( * ) COMPLEX*16 A( LDA, * ), ARF( * ), B1( LDA, * ), + B2( LDA, * ) COMPLEX*16 Z_WORK_ZGEQRF( * ), TAU( * ) * .. * * ===================================================================== * .. * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) , + ONE = ( 1.0D+0, 0.0D+0 ) ) INTEGER NTESTS PARAMETER ( NTESTS = 1 ) * .. * .. Local Scalars .. CHARACTER UPLO, CFORM, DIAG, TRANS, SIDE INTEGER I, IFORM, IIM, IIN, INFO, IUPLO, J, M, N, NA, + NFAIL, NRUN, ISIDE, IDIAG, IALPHA, ITRANS COMPLEX*16 ALPHA DOUBLE PRECISION EPS * .. * .. Local Arrays .. CHARACTER UPLOS( 2 ), FORMS( 2 ), TRANSS( 2 ), + DIAGS( 2 ), SIDES( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANGE COMPLEX*16 ZLARND EXTERNAL DLAMCH, ZLARND, ZLANGE, LSAME * .. * .. External Subroutines .. EXTERNAL ZTRTTF, ZGEQRF, ZGEQLF, ZTFSM, ZTRSM * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / DATA FORMS / 'N', 'C' / DATA SIDES / 'L', 'R' / DATA TRANSS / 'N', 'C' / DATA DIAGS / 'N', 'U' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * NRUN = 0 NFAIL = 0 INFO = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE EPS = DLAMCH( 'Precision' ) * DO 170 IIM = 1, NN * M = NVAL( IIM ) * DO 160 IIN = 1, NN * N = NVAL( IIN ) * DO 150 IFORM = 1, 2 * CFORM = FORMS( IFORM ) * DO 140 IUPLO = 1, 2 * UPLO = UPLOS( IUPLO ) * DO 130 ISIDE = 1, 2 * SIDE = SIDES( ISIDE ) * DO 120 ITRANS = 1, 2 * TRANS = TRANSS( ITRANS ) * DO 110 IDIAG = 1, 2 * DIAG = DIAGS( IDIAG ) * DO 100 IALPHA = 1, 3 * IF ( IALPHA.EQ.1 ) THEN ALPHA = ZERO ELSE IF ( IALPHA.EQ.2 ) THEN ALPHA = ONE ELSE ALPHA = ZLARND( 4, ISEED ) END IF * * All the parameters are set: * CFORM, SIDE, UPLO, TRANS, DIAG, M, N, * and ALPHA * READY TO TEST! * NRUN = NRUN + 1 * IF ( ISIDE.EQ.1 ) THEN * * The case ISIDE.EQ.1 is when SIDE.EQ.'L' * -> A is M-by-M ( B is M-by-N ) * NA = M * ELSE * * The case ISIDE.EQ.2 is when SIDE.EQ.'R' * -> A is N-by-N ( B is M-by-N ) * NA = N * END IF * * Generate A our NA--by--NA triangular * matrix. * Our test is based on forward error so we * do want A to be well conditioned! To get * a well-conditioned triangular matrix, we * take the R factor of the QR/LQ factorization * of a random matrix. * DO J = 1, NA DO I = 1, NA A( I, J ) = ZLARND( 4, ISEED ) END DO END DO * IF ( IUPLO.EQ.1 ) THEN * * The case IUPLO.EQ.1 is when SIDE.EQ.'U' * -> QR factorization. * SRNAMT = 'ZGEQRF' CALL ZGEQRF( NA, NA, A, LDA, TAU, + Z_WORK_ZGEQRF, LDA, + INFO ) * * Forcing main diagonal of test matrix to * be unit makes it ill-conditioned for * some test cases * IF ( LSAME( DIAG, 'U' ) ) THEN DO J = 1, NA DO I = 1, J A( I, J ) = A( I, J ) / + ( 2.0 * A( J, J ) ) END DO END DO END IF * ELSE * * The case IUPLO.EQ.2 is when SIDE.EQ.'L' * -> QL factorization. * SRNAMT = 'ZGELQF' CALL ZGELQF( NA, NA, A, LDA, TAU, + Z_WORK_ZGEQRF, LDA, + INFO ) * * Forcing main diagonal of test matrix to * be unit makes it ill-conditioned for * some test cases * IF ( LSAME( DIAG, 'U' ) ) THEN DO I = 1, NA DO J = 1, I A( I, J ) = A( I, J ) / + ( 2.0 * A( I, I ) ) END DO END DO END IF * END IF * * After the QR factorization, the diagonal * of A is made of real numbers, we multiply * by a random complex number of absolute * value 1.0E+00. * DO J = 1, NA A( J, J ) = A( J, J ) * + ZLARND( 5, ISEED ) END DO * * Store a copy of A in RFP format (in ARF). * SRNAMT = 'ZTRTTF' CALL ZTRTTF( CFORM, UPLO, NA, A, LDA, ARF, + INFO ) * * Generate B1 our M--by--N right-hand side * and store a copy in B2. * DO J = 1, N DO I = 1, M B1( I, J ) = ZLARND( 4, ISEED ) B2( I, J ) = B1( I, J ) END DO END DO * * Solve op( A ) X = B or X op( A ) = B * with ZTRSM * SRNAMT = 'ZTRSM' CALL ZTRSM( SIDE, UPLO, TRANS, DIAG, M, N, + ALPHA, A, LDA, B1, LDA ) * * Solve op( A ) X = B or X op( A ) = B * with ZTFSM * SRNAMT = 'ZTFSM' CALL ZTFSM( CFORM, SIDE, UPLO, TRANS, + DIAG, M, N, ALPHA, ARF, B2, + LDA ) * * Check that the result agrees. * DO J = 1, N DO I = 1, M B1( I, J ) = B2( I, J ) - B1( I, J ) END DO END DO * RESULT( 1 ) = ZLANGE( 'I', M, N, B1, LDA, + D_WORK_ZLANGE ) * RESULT( 1 ) = RESULT( 1 ) / SQRT( EPS ) + / MAX ( MAX( M, N ), 1 ) * IF( RESULT( 1 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 ) THEN WRITE( NOUT, * ) WRITE( NOUT, FMT = 9999 ) END IF WRITE( NOUT, FMT = 9997 ) 'ZTFSM', + CFORM, SIDE, UPLO, TRANS, DIAG, M, + N, RESULT( 1 ) NFAIL = NFAIL + 1 END IF * 100 CONTINUE 110 CONTINUE 120 CONTINUE 130 CONTINUE 140 CONTINUE 150 CONTINUE 160 CONTINUE 170 CONTINUE * * Print a summary of the results. * IF ( NFAIL.EQ.0 ) THEN WRITE( NOUT, FMT = 9996 ) 'ZTFSM', NRUN ELSE WRITE( NOUT, FMT = 9995 ) 'ZTFSM', NFAIL, NRUN END IF * 9999 FORMAT( 1X, ' *** Error(s) or Failure(s) while testing ZTFSM + ***') 9997 FORMAT( 1X, ' Failure in ',A5,', CFORM=''',A1,''',', + ' SIDE=''',A1,''',',' UPLO=''',A1,''',',' TRANS=''',A1,''',', + ' DIAG=''',A1,''',',' M=',I3,', N =', I3,', test=',G12.5) 9996 FORMAT( 1X, 'All tests for ',A5,' auxiliary routine passed the ', + 'threshold ( ',I5,' tests run)') 9995 FORMAT( 1X, A6, ' auxiliary routine:',I5,' out of ',I5, + ' tests failed to pass the threshold') * RETURN * * End of ZDRVRF3 * END