*> \brief \b ZPOT01 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER LDA, LDAFAC, N * DOUBLE PRECISION RESID * .. * .. Array Arguments .. * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZPOT01 reconstructs a Hermitian positive definite matrix A from *> its L*L' or U'*U factorization and computes the residual *> norm( L*L' - A ) / ( N * norm(A) * EPS ) or *> norm( U'*U - A ) / ( N * norm(A) * EPS ), *> where EPS is the machine epsilon, L' is the conjugate transpose of L, *> and U' is the conjugate transpose of U. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> Hermitian matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The original Hermitian matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N) *> \endverbatim *> *> \param[in,out] AFAC *> \verbatim *> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) *> On entry, the factor L or U from the L * L**H or U**H * U *> factorization of A. *> Overwritten with the reconstructed matrix, and then with *> the difference L * L**H - A (or U**H * U - A). *> \endverbatim *> *> \param[in] LDAFAC *> \verbatim *> LDAFAC is INTEGER *> The leading dimension of the array AFAC. LDAFAC >= max(1,N). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is DOUBLE PRECISION *> If UPLO = 'L', norm(L * L**H - A) / ( N * norm(A) * EPS ) *> If UPLO = 'U', norm(U**H * U - A) / ( N * norm(A) * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDAFAC, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J, K DOUBLE PRECISION ANORM, EPS, TR COMPLEX*16 TC * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANHE COMPLEX*16 ZDOTC EXTERNAL LSAME, DLAMCH, ZLANHE, ZDOTC * .. * .. External Subroutines .. EXTERNAL ZHER, ZSCAL, ZTRMV * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DIMAG * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Check the imaginary parts of the diagonal elements and return with * an error code if any are nonzero. * DO 10 J = 1, N IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN RESID = ONE / EPS RETURN END IF 10 CONTINUE * * Compute the product U**H * U, overwriting U. * IF( LSAME( UPLO, 'U' ) ) THEN DO 20 K = N, 1, -1 * * Compute the (K,K) element of the result. * TR = DBLE( ZDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) ) AFAC( K, K ) = TR * * Compute the rest of column K. * CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC, $ LDAFAC, AFAC( 1, K ), 1 ) * 20 CONTINUE * * Compute the product L * L**H, overwriting L. * ELSE DO 30 K = N, 1, -1 * * Add a multiple of column K of the factor L to each of * columns K+1 through N. * IF( K+1.LE.N ) $ CALL ZHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1, $ AFAC( K+1, K+1 ), LDAFAC ) * * Scale column K by the diagonal element. * TC = AFAC( K, K ) CALL ZSCAL( N-K+1, TC, AFAC( K, K ), 1 ) * 30 CONTINUE END IF * * Compute the difference L * L**H - A (or U**H * U - A). * IF( LSAME( UPLO, 'U' ) ) THEN DO 50 J = 1, N DO 40 I = 1, J - 1 AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 40 CONTINUE AFAC( J, J ) = AFAC( J, J ) - DBLE( A( J, J ) ) 50 CONTINUE ELSE DO 70 J = 1, N AFAC( J, J ) = AFAC( J, J ) - DBLE( A( J, J ) ) DO 60 I = J + 1, N AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 60 CONTINUE 70 CONTINUE END IF * * Compute norm(L*U - A) / ( N * norm(A) * EPS ) * RESID = ZLANHE( '1', UPLO, N, AFAC, LDAFAC, RWORK ) * RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS * RETURN * * End of ZPOT01 * END