*> \brief <b> SGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (simple driver)
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGESV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesv.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       REAL               A( LDA, * ), B( LDB, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGESV computes the solution to a real system of linear equations
*>    A * X = B,
*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
*>
*> The LU decomposition with partial pivoting and row interchanges is
*> used to factor A as
*>    A = P * L * U,
*> where P is a permutation matrix, L is unit lower triangular, and U is
*> upper triangular.  The factored form of A is then used to solve the
*> system of equations A * X = B.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the N-by-N coefficient matrix A.
*>          On exit, the factors L and U from the factorization
*>          A = P*L*U; the unit diagonal elements of L are not stored.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices that define the permutation matrix P;
*>          row i of the matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          On entry, the N-by-NRHS matrix of right hand side matrix B.
*>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
*>                has been completed, but the factor U is exactly
*>                singular, so the solution could not be computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realGEsolve
*
*  =====================================================================
      SUBROUTINE SGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
*  -- LAPACK driver routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               A( LDA, * ), B( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. External Subroutines ..
      EXTERNAL           SGETRF, SGETRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGESV ', -INFO )
         RETURN
      END IF
*
*     Compute the LU factorization of A.
*
      CALL SGETRF( N, N, A, LDA, IPIV, INFO )
      IF( INFO.EQ.0 ) THEN
*
*        Solve the system A*X = B, overwriting B with X.
*
         CALL SGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, B, LDB,
     $                INFO )
      END IF
      RETURN
*
*     End of SGESV
*
      END