*> \brief \b SORGTR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORGTR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgtr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgtr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgtr.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SORGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, LWORK, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), TAU( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SORGTR generates a real orthogonal matrix Q which is defined as the
*> product of n-1 elementary reflectors of order N, as returned by
*> SSYTRD:
*>
*> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
*>
*> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U': Upper triangle of A contains elementary reflectors
*>                 from SSYTRD;
*>          = 'L': Lower triangle of A contains elementary reflectors
*>                 from SSYTRD.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix Q. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the vectors which define the elementary reflectors,
*>          as returned by SSYTRD.
*>          On exit, the N-by-N orthogonal matrix Q.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is REAL array, dimension (N-1)
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i), as returned by SSYTRD.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK. LWORK >= max(1,N-1).
*>          For optimum performance LWORK >= (N-1)*NB, where NB is
*>          the optimal blocksize.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realOTHERcomputational
*
*  =====================================================================
      SUBROUTINE SORGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      INTEGER            I, IINFO, J, LWKOPT, NB
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           ILAENV, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SORGQL, SORGQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN
         INFO = -7
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF ( UPPER ) THEN
           NB = ILAENV( 1, 'SORGQL', ' ', N-1, N-1, N-1, -1 )
         ELSE
           NB = ILAENV( 1, 'SORGQR', ' ', N-1, N-1, N-1, -1 )
         END IF
         LWKOPT = MAX( 1, N-1 )*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORGTR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( UPPER ) THEN
*
*        Q was determined by a call to SSYTRD with UPLO = 'U'
*
*        Shift the vectors which define the elementary reflectors one
*        column to the left, and set the last row and column of Q to
*        those of the unit matrix
*
         DO 20 J = 1, N - 1
            DO 10 I = 1, J - 1
               A( I, J ) = A( I, J+1 )
   10       CONTINUE
            A( N, J ) = ZERO
   20    CONTINUE
         DO 30 I = 1, N - 1
            A( I, N ) = ZERO
   30    CONTINUE
         A( N, N ) = ONE
*
*        Generate Q(1:n-1,1:n-1)
*
         CALL SORGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
*
      ELSE
*
*        Q was determined by a call to SSYTRD with UPLO = 'L'.
*
*        Shift the vectors which define the elementary reflectors one
*        column to the right, and set the first row and column of Q to
*        those of the unit matrix
*
         DO 50 J = N, 2, -1
            A( 1, J ) = ZERO
            DO 40 I = J + 1, N
               A( I, J ) = A( I, J-1 )
   40       CONTINUE
   50    CONTINUE
         A( 1, 1 ) = ONE
         DO 60 I = 2, N
            A( I, 1 ) = ZERO
   60    CONTINUE
         IF( N.GT.1 ) THEN
*
*           Generate Q(2:n,2:n)
*
            CALL SORGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
     $                   LWORK, IINFO )
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of SORGTR
*
      END