*> \brief \b SSPGVX
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SSPGVX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgvx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgvx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgvx.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
*                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
*                          IFAIL, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOBZ, RANGE, UPLO
*       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
*       REAL               ABSTOL, VL, VU
*       ..
*       .. Array Arguments ..
*       INTEGER            IFAIL( * ), IWORK( * )
*       REAL               AP( * ), BP( * ), W( * ), WORK( * ),
*      $                   Z( LDZ, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SSPGVX computes selected eigenvalues, and optionally, eigenvectors
*> of a real generalized symmetric-definite eigenproblem, of the form
*> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A
*> and B are assumed to be symmetric, stored in packed storage, and B
*> is also positive definite.  Eigenvalues and eigenvectors can be
*> selected by specifying either a range of values or a range of indices
*> for the desired eigenvalues.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ITYPE
*> \verbatim
*>          ITYPE is INTEGER
*>          Specifies the problem type to be solved:
*>          = 1:  A*x = (lambda)*B*x
*>          = 2:  A*B*x = (lambda)*x
*>          = 3:  B*A*x = (lambda)*x
*> \endverbatim
*>
*> \param[in] JOBZ
*> \verbatim
*>          JOBZ is CHARACTER*1
*>          = 'N':  Compute eigenvalues only;
*>          = 'V':  Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] RANGE
*> \verbatim
*>          RANGE is CHARACTER*1
*>          = 'A': all eigenvalues will be found.
*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
*>                 will be found.
*>          = 'I': the IL-th through IU-th eigenvalues will be found.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A and B are stored;
*>          = 'L':  Lower triangle of A and B are stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix pencil (A,B).  N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*>          AP is REAL array, dimension (N*(N+1)/2)
*>          On entry, the upper or lower triangle of the symmetric matrix
*>          A, packed columnwise in a linear array.  The j-th column of A
*>          is stored in the array AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*>
*>          On exit, the contents of AP are destroyed.
*> \endverbatim
*>
*> \param[in,out] BP
*> \verbatim
*>          BP is REAL array, dimension (N*(N+1)/2)
*>          On entry, the upper or lower triangle of the symmetric matrix
*>          B, packed columnwise in a linear array.  The j-th column of B
*>          is stored in the array BP as follows:
*>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
*>
*>          On exit, the triangular factor U or L from the Cholesky
*>          factorization B = U**T*U or B = L*L**T, in the same storage
*>          format as B.
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>          VL is REAL
*>
*>          If RANGE='V', the lower bound of the interval to
*>          be searched for eigenvalues. VL < VU.
*>          Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*>          VU is REAL
*>
*>          If RANGE='V', the upper bound of the interval to
*>          be searched for eigenvalues. VL < VU.
*>          Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*>          IL is INTEGER
*>
*>          If RANGE='I', the index of the
*>          smallest eigenvalue to be returned.
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*>          Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*>          IU is INTEGER
*>
*>          If RANGE='I', the index of the
*>          largest eigenvalue to be returned.
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*>          Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*>          ABSTOL is REAL
*>          The absolute error tolerance for the eigenvalues.
*>          An approximate eigenvalue is accepted as converged
*>          when it is determined to lie in an interval [a,b]
*>          of width less than or equal to
*>
*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
*>
*>          where EPS is the machine precision.  If ABSTOL is less than
*>          or equal to zero, then  EPS*|T|  will be used in its place,
*>          where |T| is the 1-norm of the tridiagonal matrix obtained
*>          by reducing A to tridiagonal form.
*>
*>          Eigenvalues will be computed most accurately when ABSTOL is
*>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*>          If this routine returns with INFO>0, indicating that some
*>          eigenvectors did not converge, try setting ABSTOL to
*>          2*SLAMCH('S').
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*>          M is INTEGER
*>          The total number of eigenvalues found.  0 <= M <= N.
*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is REAL array, dimension (N)
*>          On normal exit, the first M elements contain the selected
*>          eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is REAL array, dimension (LDZ, max(1,M))
*>          If JOBZ = 'N', then Z is not referenced.
*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*>          contain the orthonormal eigenvectors of the matrix A
*>          corresponding to the selected eigenvalues, with the i-th
*>          column of Z holding the eigenvector associated with W(i).
*>          The eigenvectors are normalized as follows:
*>          if ITYPE = 1 or 2, Z**T*B*Z = I;
*>          if ITYPE = 3, Z**T*inv(B)*Z = I.
*>
*>          If an eigenvector fails to converge, then that column of Z
*>          contains the latest approximation to the eigenvector, and the
*>          index of the eigenvector is returned in IFAIL.
*>          Note: the user must ensure that at least max(1,M) columns are
*>          supplied in the array Z; if RANGE = 'V', the exact value of M
*>          is not known in advance and an upper bound must be used.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= 1, and if
*>          JOBZ = 'V', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (8*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (5*N)
*> \endverbatim
*>
*> \param[out] IFAIL
*> \verbatim
*>          IFAIL is INTEGER array, dimension (N)
*>          If JOBZ = 'V', then if INFO = 0, the first M elements of
*>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
*>          indices of the eigenvectors that failed to converge.
*>          If JOBZ = 'N', then IFAIL is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  SPPTRF or SSPEVX returned an error code:
*>             <= N:  if INFO = i, SSPEVX failed to converge;
*>                    i eigenvectors failed to converge.  Their indices
*>                    are stored in array IFAIL.
*>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
*>                    principal minor of order i of B is not positive.
*>                    The factorization of B could not be completed and
*>                    no eigenvalues or eigenvectors were computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realOTHEReigen
*
*> \par Contributors:
*  ==================
*>
*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  =====================================================================
      SUBROUTINE SSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
     $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
     $                   IFAIL, INFO )
*
*  -- LAPACK driver routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
      REAL               ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IFAIL( * ), IWORK( * )
      REAL               AP( * ), BP( * ), W( * ), WORK( * ),
     $                   Z( LDZ, * )
*     ..
*
* =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
      CHARACTER          TRANS
      INTEGER            J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SPPTRF, SSPEVX, SSPGST, STPMV, STPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      UPPER = LSAME( UPLO, 'U' )
      WANTZ = LSAME( JOBZ, 'V' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
*
      INFO = 0
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         INFO = -1
      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
         INFO = -3
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE
         IF( VALEIG ) THEN
            IF( N.GT.0 .AND. VU.LE.VL ) THEN
               INFO = -9
            END IF
         ELSE IF( INDEIG ) THEN
            IF( IL.LT.1 ) THEN
               INFO = -10
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
               INFO = -11
            END IF
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
            INFO = -16
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSPGVX', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      M = 0
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a Cholesky factorization of B.
*
      CALL SPPTRF( UPLO, N, BP, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem and solve.
*
      CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
      CALL SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
     $             W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
*
      IF( WANTZ ) THEN
*
*        Backtransform eigenvectors to the original problem.
*
         IF( INFO.GT.0 )
     $      M = INFO - 1
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
*           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
*
            IF( UPPER ) THEN
               TRANS = 'N'
            ELSE
               TRANS = 'T'
            END IF
*
            DO 10 J = 1, M
               CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
     $                     1 )
   10       CONTINUE
*
         ELSE IF( ITYPE.EQ.3 ) THEN
*
*           For B*A*x=(lambda)*x;
*           backtransform eigenvectors: x = L*y or U**T*y
*
            IF( UPPER ) THEN
               TRANS = 'T'
            ELSE
               TRANS = 'N'
            END IF
*
            DO 20 J = 1, M
               CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
     $                     1 )
   20       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of SSPGVX
*
      END