*> \brief \b ZUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZUNMR3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmr3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmr3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmr3.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
*                          WORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          SIDE, TRANS
*       INTEGER            INFO, K, L, LDA, LDC, M, N
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZUNMR3 overwrites the general complex m by n matrix C with
*>
*>       Q * C  if SIDE = 'L' and TRANS = 'N', or
*>
*>       Q**H* C  if SIDE = 'L' and TRANS = 'C', or
*>
*>       C * Q  if SIDE = 'R' and TRANS = 'N', or
*>
*>       C * Q**H if SIDE = 'R' and TRANS = 'C',
*>
*> where Q is a complex unitary matrix defined as the product of k
*> elementary reflectors
*>
*>       Q = H(1) H(2) . . . H(k)
*>
*> as returned by ZTZRZF. Q is of order m if SIDE = 'L' and of order n
*> if SIDE = 'R'.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'L': apply Q or Q**H from the Left
*>          = 'R': apply Q or Q**H from the Right
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N': apply Q  (No transpose)
*>          = 'C': apply Q**H (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines
*>          the matrix Q.
*>          If SIDE = 'L', M >= K >= 0;
*>          if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] L
*> \verbatim
*>          L is INTEGER
*>          The number of columns of the matrix A containing
*>          the meaningful part of the Householder reflectors.
*>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension
*>                               (LDA,M) if SIDE = 'L',
*>                               (LDA,N) if SIDE = 'R'
*>          The i-th row must contain the vector which defines the
*>          elementary reflector H(i), for i = 1,2,...,k, as returned by
*>          ZTZRZF in the last k rows of its array argument A.
*>          A is modified by the routine but restored on exit.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,K).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (K)
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i), as returned by ZTZRZF.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension (LDC,N)
*>          On entry, the m-by-n matrix C.
*>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension
*>                                   (N) if SIDE = 'L',
*>                                   (M) if SIDE = 'R'
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
     $                   WORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, K, L, LDA, LDC, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LEFT, NOTRAN
      INTEGER            I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
      COMPLEX*16         TAUI
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLARZ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
*
*     NQ is the order of Q
*
      IF( LEFT ) THEN
         NQ = M
      ELSE
         NQ = N
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
         INFO = -5
      ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
     $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZUNMR3', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
     $   RETURN
*
      IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
         I1 = 1
         I2 = K
         I3 = 1
      ELSE
         I1 = K
         I2 = 1
         I3 = -1
      END IF
*
      IF( LEFT ) THEN
         NI = N
         JA = M - L + 1
         JC = 1
      ELSE
         MI = M
         JA = N - L + 1
         IC = 1
      END IF
*
      DO 10 I = I1, I2, I3
         IF( LEFT ) THEN
*
*           H(i) or H(i)**H is applied to C(i:m,1:n)
*
            MI = M - I + 1
            IC = I
         ELSE
*
*           H(i) or H(i)**H is applied to C(1:m,i:n)
*
            NI = N - I + 1
            JC = I
         END IF
*
*        Apply H(i) or H(i)**H
*
         IF( NOTRAN ) THEN
            TAUI = TAU( I )
         ELSE
            TAUI = DCONJG( TAU( I ) )
         END IF
         CALL ZLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAUI,
     $               C( IC, JC ), LDC, WORK )
*
   10 CONTINUE
*
      RETURN
*
*     End of ZUNMR3
*
      END