You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
3.4 KiB
151 lines
3.4 KiB
!> \brief \b DROTG
|
|
!
|
|
! =========== DOCUMENTATION ===========
|
|
!
|
|
! Online html documentation available at
|
|
! http://www.netlib.org/lapack/explore-html/
|
|
!
|
|
! Definition:
|
|
! ===========
|
|
!
|
|
! DROTG constructs a plane rotation
|
|
! [ c s ] [ a ] = [ r ]
|
|
! [ -s c ] [ b ] [ 0 ]
|
|
! satisfying c**2 + s**2 = 1.
|
|
!
|
|
!> \par Purpose:
|
|
! =============
|
|
!>
|
|
!> \verbatim
|
|
!>
|
|
!> The computation uses the formulas
|
|
!> sigma = sgn(a) if |a| > |b|
|
|
!> = sgn(b) if |b| >= |a|
|
|
!> r = sigma*sqrt( a**2 + b**2 )
|
|
!> c = 1; s = 0 if r = 0
|
|
!> c = a/r; s = b/r if r != 0
|
|
!> The subroutine also computes
|
|
!> z = s if |a| > |b|,
|
|
!> = 1/c if |b| >= |a| and c != 0
|
|
!> = 1 if c = 0
|
|
!> This allows c and s to be reconstructed from z as follows:
|
|
!> If z = 1, set c = 0, s = 1.
|
|
!> If |z| < 1, set c = sqrt(1 - z**2) and s = z.
|
|
!> If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2).
|
|
!>
|
|
!> \endverbatim
|
|
!
|
|
! Arguments:
|
|
! ==========
|
|
!
|
|
!> \param[in,out] A
|
|
!> \verbatim
|
|
!> A is DOUBLE PRECISION
|
|
!> On entry, the scalar a.
|
|
!> On exit, the scalar r.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[in,out] B
|
|
!> \verbatim
|
|
!> B is DOUBLE PRECISION
|
|
!> On entry, the scalar b.
|
|
!> On exit, the scalar z.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[out] C
|
|
!> \verbatim
|
|
!> C is DOUBLE PRECISION
|
|
!> The scalar c.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[out] S
|
|
!> \verbatim
|
|
!> S is DOUBLE PRECISION
|
|
!> The scalar s.
|
|
!> \endverbatim
|
|
!
|
|
! Authors:
|
|
! ========
|
|
!
|
|
!> \author Edward Anderson, Lockheed Martin
|
|
!
|
|
!> \par Contributors:
|
|
! ==================
|
|
!>
|
|
!> Weslley Pereira, University of Colorado Denver, USA
|
|
!
|
|
!> \ingroup single_blas_level1
|
|
!
|
|
!> \par Further Details:
|
|
! =====================
|
|
!>
|
|
!> \verbatim
|
|
!>
|
|
!> Anderson E. (2017)
|
|
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
|
|
!> ACM Trans Math Softw 44:1--28
|
|
!> https://doi.org/10.1145/3061665
|
|
!>
|
|
!> \endverbatim
|
|
!
|
|
! =====================================================================
|
|
subroutine DROTG( a, b, c, s )
|
|
integer, parameter :: wp = kind(1.d0)
|
|
!
|
|
! -- Reference BLAS level1 routine --
|
|
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
|
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
!
|
|
! .. Constants ..
|
|
real(wp), parameter :: zero = 0.0_wp
|
|
real(wp), parameter :: one = 1.0_wp
|
|
! ..
|
|
! .. Scaling constants ..
|
|
real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( &
|
|
minexponent(0._wp)-1, &
|
|
1-maxexponent(0._wp) &
|
|
)
|
|
real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( &
|
|
1-minexponent(0._wp), &
|
|
maxexponent(0._wp)-1 &
|
|
)
|
|
! ..
|
|
! .. Scalar Arguments ..
|
|
real(wp) :: a, b, c, s
|
|
! ..
|
|
! .. Local Scalars ..
|
|
real(wp) :: anorm, bnorm, scl, sigma, r, z
|
|
! ..
|
|
anorm = abs(a)
|
|
bnorm = abs(b)
|
|
if( bnorm == zero ) then
|
|
c = one
|
|
s = zero
|
|
b = zero
|
|
else if( anorm == zero ) then
|
|
c = zero
|
|
s = one
|
|
a = b
|
|
b = one
|
|
else
|
|
scl = min( safmax, max( safmin, anorm, bnorm ) )
|
|
if( anorm > bnorm ) then
|
|
sigma = sign(one,a)
|
|
else
|
|
sigma = sign(one,b)
|
|
end if
|
|
r = sigma*( scl*sqrt((a/scl)**2 + (b/scl)**2) )
|
|
c = a/r
|
|
s = b/r
|
|
if( anorm > bnorm ) then
|
|
z = s
|
|
else if( c /= zero ) then
|
|
z = one/c
|
|
else
|
|
z = one
|
|
end if
|
|
a = r
|
|
b = z
|
|
end if
|
|
return
|
|
end subroutine
|
|
|