You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
377 lines
11 KiB
377 lines
11 KiB
*> \brief \b ZHBMV
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* COMPLEX*16 ALPHA,BETA
|
|
* INTEGER INCX,INCY,K,LDA,N
|
|
* CHARACTER UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 A(LDA,*),X(*),Y(*)
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZHBMV performs the matrix-vector operation
|
|
*>
|
|
*> y := alpha*A*x + beta*y,
|
|
*>
|
|
*> where alpha and beta are scalars, x and y are n element vectors and
|
|
*> A is an n by n hermitian band matrix, with k super-diagonals.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> On entry, UPLO specifies whether the upper or lower
|
|
*> triangular part of the band matrix A is being supplied as
|
|
*> follows:
|
|
*>
|
|
*> UPLO = 'U' or 'u' The upper triangular part of A is
|
|
*> being supplied.
|
|
*>
|
|
*> UPLO = 'L' or 'l' The lower triangular part of A is
|
|
*> being supplied.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, N specifies the order of the matrix A.
|
|
*> N must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> On entry, K specifies the number of super-diagonals of the
|
|
*> matrix A. K must satisfy 0 .le. K.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is COMPLEX*16
|
|
*> On entry, ALPHA specifies the scalar alpha.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension ( LDA, N )
|
|
*> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
|
|
*> by n part of the array A must contain the upper triangular
|
|
*> band part of the hermitian matrix, supplied column by
|
|
*> column, with the leading diagonal of the matrix in row
|
|
*> ( k + 1 ) of the array, the first super-diagonal starting at
|
|
*> position 2 in row k, and so on. The top left k by k triangle
|
|
*> of the array A is not referenced.
|
|
*> The following program segment will transfer the upper
|
|
*> triangular part of a hermitian band matrix from conventional
|
|
*> full matrix storage to band storage:
|
|
*>
|
|
*> DO 20, J = 1, N
|
|
*> M = K + 1 - J
|
|
*> DO 10, I = MAX( 1, J - K ), J
|
|
*> A( M + I, J ) = matrix( I, J )
|
|
*> 10 CONTINUE
|
|
*> 20 CONTINUE
|
|
*>
|
|
*> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
|
|
*> by n part of the array A must contain the lower triangular
|
|
*> band part of the hermitian matrix, supplied column by
|
|
*> column, with the leading diagonal of the matrix in row 1 of
|
|
*> the array, the first sub-diagonal starting at position 1 in
|
|
*> row 2, and so on. The bottom right k by k triangle of the
|
|
*> array A is not referenced.
|
|
*> The following program segment will transfer the lower
|
|
*> triangular part of a hermitian band matrix from conventional
|
|
*> full matrix storage to band storage:
|
|
*>
|
|
*> DO 20, J = 1, N
|
|
*> M = 1 - J
|
|
*> DO 10, I = J, MIN( N, J + K )
|
|
*> A( M + I, J ) = matrix( I, J )
|
|
*> 10 CONTINUE
|
|
*> 20 CONTINUE
|
|
*>
|
|
*> Note that the imaginary parts of the diagonal elements need
|
|
*> not be set and are assumed to be zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> On entry, LDA specifies the first dimension of A as declared
|
|
*> in the calling (sub) program. LDA must be at least
|
|
*> ( k + 1 ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] X
|
|
*> \verbatim
|
|
*> X is COMPLEX*16 array, dimension at least
|
|
*> ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
*> Before entry, the incremented array X must contain the
|
|
*> vector x.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCX
|
|
*> \verbatim
|
|
*> INCX is INTEGER
|
|
*> On entry, INCX specifies the increment for the elements of
|
|
*> X. INCX must not be zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] BETA
|
|
*> \verbatim
|
|
*> BETA is COMPLEX*16
|
|
*> On entry, BETA specifies the scalar beta.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Y
|
|
*> \verbatim
|
|
*> Y is COMPLEX*16 array, dimension at least
|
|
*> ( 1 + ( n - 1 )*abs( INCY ) ).
|
|
*> Before entry, the incremented array Y must contain the
|
|
*> vector y. On exit, Y is overwritten by the updated vector y.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCY
|
|
*> \verbatim
|
|
*> INCY is INTEGER
|
|
*> On entry, INCY specifies the increment for the elements of
|
|
*> Y. INCY must not be zero.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_blas_level2
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Level 2 Blas routine.
|
|
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
|
|
*>
|
|
*> -- Written on 22-October-1986.
|
|
*> Jack Dongarra, Argonne National Lab.
|
|
*> Jeremy Du Croz, Nag Central Office.
|
|
*> Sven Hammarling, Nag Central Office.
|
|
*> Richard Hanson, Sandia National Labs.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
|
*
|
|
* -- Reference BLAS level2 routine --
|
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
COMPLEX*16 ALPHA,BETA
|
|
INTEGER INCX,INCY,K,LDA,N
|
|
CHARACTER UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 A(LDA,*),X(*),Y(*)
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 ONE
|
|
PARAMETER (ONE= (1.0D+0,0.0D+0))
|
|
COMPLEX*16 ZERO
|
|
PARAMETER (ZERO= (0.0D+0,0.0D+0))
|
|
* ..
|
|
* .. Local Scalars ..
|
|
COMPLEX*16 TEMP1,TEMP2
|
|
INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE,DCONJG,MAX,MIN
|
|
* ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
|
INFO = 1
|
|
ELSE IF (N.LT.0) THEN
|
|
INFO = 2
|
|
ELSE IF (K.LT.0) THEN
|
|
INFO = 3
|
|
ELSE IF (LDA.LT. (K+1)) THEN
|
|
INFO = 6
|
|
ELSE IF (INCX.EQ.0) THEN
|
|
INFO = 8
|
|
ELSE IF (INCY.EQ.0) THEN
|
|
INFO = 11
|
|
END IF
|
|
IF (INFO.NE.0) THEN
|
|
CALL XERBLA('ZHBMV ',INFO)
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
|
*
|
|
* Set up the start points in X and Y.
|
|
*
|
|
IF (INCX.GT.0) THEN
|
|
KX = 1
|
|
ELSE
|
|
KX = 1 - (N-1)*INCX
|
|
END IF
|
|
IF (INCY.GT.0) THEN
|
|
KY = 1
|
|
ELSE
|
|
KY = 1 - (N-1)*INCY
|
|
END IF
|
|
*
|
|
* Start the operations. In this version the elements of the array A
|
|
* are accessed sequentially with one pass through A.
|
|
*
|
|
* First form y := beta*y.
|
|
*
|
|
IF (BETA.NE.ONE) THEN
|
|
IF (INCY.EQ.1) THEN
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO 10 I = 1,N
|
|
Y(I) = ZERO
|
|
10 CONTINUE
|
|
ELSE
|
|
DO 20 I = 1,N
|
|
Y(I) = BETA*Y(I)
|
|
20 CONTINUE
|
|
END IF
|
|
ELSE
|
|
IY = KY
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO 30 I = 1,N
|
|
Y(IY) = ZERO
|
|
IY = IY + INCY
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 40 I = 1,N
|
|
Y(IY) = BETA*Y(IY)
|
|
IY = IY + INCY
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
IF (ALPHA.EQ.ZERO) RETURN
|
|
IF (LSAME(UPLO,'U')) THEN
|
|
*
|
|
* Form y when upper triangle of A is stored.
|
|
*
|
|
KPLUS1 = K + 1
|
|
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
DO 60 J = 1,N
|
|
TEMP1 = ALPHA*X(J)
|
|
TEMP2 = ZERO
|
|
L = KPLUS1 - J
|
|
DO 50 I = MAX(1,J-K),J - 1
|
|
Y(I) = Y(I) + TEMP1*A(L+I,J)
|
|
TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
|
|
50 CONTINUE
|
|
Y(J) = Y(J) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
|
|
60 CONTINUE
|
|
ELSE
|
|
JX = KX
|
|
JY = KY
|
|
DO 80 J = 1,N
|
|
TEMP1 = ALPHA*X(JX)
|
|
TEMP2 = ZERO
|
|
IX = KX
|
|
IY = KY
|
|
L = KPLUS1 - J
|
|
DO 70 I = MAX(1,J-K),J - 1
|
|
Y(IY) = Y(IY) + TEMP1*A(L+I,J)
|
|
TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
|
|
IX = IX + INCX
|
|
IY = IY + INCY
|
|
70 CONTINUE
|
|
Y(JY) = Y(JY) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
|
|
JX = JX + INCX
|
|
JY = JY + INCY
|
|
IF (J.GT.K) THEN
|
|
KX = KX + INCX
|
|
KY = KY + INCY
|
|
END IF
|
|
80 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Form y when lower triangle of A is stored.
|
|
*
|
|
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
DO 100 J = 1,N
|
|
TEMP1 = ALPHA*X(J)
|
|
TEMP2 = ZERO
|
|
Y(J) = Y(J) + TEMP1*DBLE(A(1,J))
|
|
L = 1 - J
|
|
DO 90 I = J + 1,MIN(N,J+K)
|
|
Y(I) = Y(I) + TEMP1*A(L+I,J)
|
|
TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
|
|
90 CONTINUE
|
|
Y(J) = Y(J) + ALPHA*TEMP2
|
|
100 CONTINUE
|
|
ELSE
|
|
JX = KX
|
|
JY = KY
|
|
DO 120 J = 1,N
|
|
TEMP1 = ALPHA*X(JX)
|
|
TEMP2 = ZERO
|
|
Y(JY) = Y(JY) + TEMP1*DBLE(A(1,J))
|
|
L = 1 - J
|
|
IX = JX
|
|
IY = JY
|
|
DO 110 I = J + 1,MIN(N,J+K)
|
|
IX = IX + INCX
|
|
IY = IY + INCY
|
|
Y(IY) = Y(IY) + TEMP1*A(L+I,J)
|
|
TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
|
|
110 CONTINUE
|
|
Y(JY) = Y(JY) + ALPHA*TEMP2
|
|
JX = JX + INCX
|
|
JY = JY + INCY
|
|
120 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZHBMV
|
|
*
|
|
END
|
|
|