You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
536 lines
15 KiB
536 lines
15 KiB
*> \brief \b ZGGSVP
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZGGSVP + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
|
|
* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
|
|
* IWORK, RWORK, TAU, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBQ, JOBU, JOBV
|
|
* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
|
|
* DOUBLE PRECISION TOLA, TOLB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION RWORK( * )
|
|
* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> This routine is deprecated and has been replaced by routine ZGGSVP3.
|
|
*>
|
|
*> ZGGSVP computes unitary matrices U, V and Q such that
|
|
*>
|
|
*> N-K-L K L
|
|
*> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
|
|
*> L ( 0 0 A23 )
|
|
*> M-K-L ( 0 0 0 )
|
|
*>
|
|
*> N-K-L K L
|
|
*> = K ( 0 A12 A13 ) if M-K-L < 0;
|
|
*> M-K ( 0 0 A23 )
|
|
*>
|
|
*> N-K-L K L
|
|
*> V**H*B*Q = L ( 0 0 B13 )
|
|
*> P-L ( 0 0 0 )
|
|
*>
|
|
*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
|
|
*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
|
|
*> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
|
|
*> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
|
|
*>
|
|
*> This decomposition is the preprocessing step for computing the
|
|
*> Generalized Singular Value Decomposition (GSVD), see subroutine
|
|
*> ZGGSVD.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBU
|
|
*> \verbatim
|
|
*> JOBU is CHARACTER*1
|
|
*> = 'U': Unitary matrix U is computed;
|
|
*> = 'N': U is not computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBV
|
|
*> \verbatim
|
|
*> JOBV is CHARACTER*1
|
|
*> = 'V': Unitary matrix V is computed;
|
|
*> = 'N': V is not computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBQ
|
|
*> \verbatim
|
|
*> JOBQ is CHARACTER*1
|
|
*> = 'Q': Unitary matrix Q is computed;
|
|
*> = 'N': Q is not computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] P
|
|
*> \verbatim
|
|
*> P is INTEGER
|
|
*> The number of rows of the matrix B. P >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit, A contains the triangular (or trapezoidal) matrix
|
|
*> described in the Purpose section.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX*16 array, dimension (LDB,N)
|
|
*> On entry, the P-by-N matrix B.
|
|
*> On exit, B contains the triangular matrix described in
|
|
*> the Purpose section.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,P).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TOLA
|
|
*> \verbatim
|
|
*> TOLA is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TOLB
|
|
*> \verbatim
|
|
*> TOLB is DOUBLE PRECISION
|
|
*>
|
|
*> TOLA and TOLB are the thresholds to determine the effective
|
|
*> numerical rank of matrix B and a subblock of A. Generally,
|
|
*> they are set to
|
|
*> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
|
|
*> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
|
|
*> The size of TOLA and TOLB may affect the size of backward
|
|
*> errors of the decomposition.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] L
|
|
*> \verbatim
|
|
*> L is INTEGER
|
|
*>
|
|
*> On exit, K and L specify the dimension of the subblocks
|
|
*> described in Purpose section.
|
|
*> K + L = effective numerical rank of (A**H,B**H)**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U
|
|
*> \verbatim
|
|
*> U is COMPLEX*16 array, dimension (LDU,M)
|
|
*> If JOBU = 'U', U contains the unitary matrix U.
|
|
*> If JOBU = 'N', U is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of the array U. LDU >= max(1,M) if
|
|
*> JOBU = 'U'; LDU >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V
|
|
*> \verbatim
|
|
*> V is COMPLEX*16 array, dimension (LDV,P)
|
|
*> If JOBV = 'V', V contains the unitary matrix V.
|
|
*> If JOBV = 'N', V is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of the array V. LDV >= max(1,P) if
|
|
*> JOBV = 'V'; LDV >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX*16 array, dimension (LDQ,N)
|
|
*> If JOBQ = 'Q', Q contains the unitary matrix Q.
|
|
*> If JOBQ = 'N', Q is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max(1,N) if
|
|
*> JOBQ = 'Q'; LDQ >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX*16 array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (max(3*N,M,P))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
|
|
*> with column pivoting to detect the effective numerical rank of the
|
|
*> a matrix. It may be replaced by a better rank determination strategy.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
|
|
$ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
|
|
$ IWORK, RWORK, TAU, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBQ, JOBU, JOBV
|
|
INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
|
|
DOUBLE PRECISION TOLA, TOLB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION RWORK( * )
|
|
COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
$ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL FORWRD, WANTQ, WANTU, WANTV
|
|
INTEGER I, J
|
|
COMPLEX*16 T
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
|
|
$ ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
|
|
* ..
|
|
* .. Statement Functions ..
|
|
DOUBLE PRECISION CABS1
|
|
* ..
|
|
* .. Statement Function definitions ..
|
|
CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
WANTU = LSAME( JOBU, 'U' )
|
|
WANTV = LSAME( JOBV, 'V' )
|
|
WANTQ = LSAME( JOBQ, 'Q' )
|
|
FORWRD = .TRUE.
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( P.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
|
|
INFO = -10
|
|
ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
|
|
INFO = -16
|
|
ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
|
|
INFO = -18
|
|
ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
|
|
INFO = -20
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZGGSVP', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* QR with column pivoting of B: B*P = V*( S11 S12 )
|
|
* ( 0 0 )
|
|
*
|
|
DO 10 I = 1, N
|
|
IWORK( I ) = 0
|
|
10 CONTINUE
|
|
CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
|
|
*
|
|
* Update A := A*P
|
|
*
|
|
CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
|
|
*
|
|
* Determine the effective rank of matrix B.
|
|
*
|
|
L = 0
|
|
DO 20 I = 1, MIN( P, N )
|
|
IF( CABS1( B( I, I ) ).GT.TOLB )
|
|
$ L = L + 1
|
|
20 CONTINUE
|
|
*
|
|
IF( WANTV ) THEN
|
|
*
|
|
* Copy the details of V, and form V.
|
|
*
|
|
CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
|
|
IF( P.GT.1 )
|
|
$ CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
|
|
$ LDV )
|
|
CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
|
|
END IF
|
|
*
|
|
* Clean up B
|
|
*
|
|
DO 40 J = 1, L - 1
|
|
DO 30 I = J + 1, L
|
|
B( I, J ) = CZERO
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
IF( P.GT.L )
|
|
$ CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
|
|
*
|
|
IF( WANTQ ) THEN
|
|
*
|
|
* Set Q = I and Update Q := Q*P
|
|
*
|
|
CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
|
|
CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
|
|
END IF
|
|
*
|
|
IF( P.GE.L .AND. N.NE.L ) THEN
|
|
*
|
|
* RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
|
|
*
|
|
CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
|
|
*
|
|
* Update A := A*Z**H
|
|
*
|
|
CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
|
|
$ TAU, A, LDA, WORK, INFO )
|
|
IF( WANTQ ) THEN
|
|
*
|
|
* Update Q := Q*Z**H
|
|
*
|
|
CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
|
|
$ LDB, TAU, Q, LDQ, WORK, INFO )
|
|
END IF
|
|
*
|
|
* Clean up B
|
|
*
|
|
CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
|
|
DO 60 J = N - L + 1, N
|
|
DO 50 I = J - N + L + 1, L
|
|
B( I, J ) = CZERO
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
* Let N-L L
|
|
* A = ( A11 A12 ) M,
|
|
*
|
|
* then the following does the complete QR decomposition of A11:
|
|
*
|
|
* A11 = U*( 0 T12 )*P1**H
|
|
* ( 0 0 )
|
|
*
|
|
DO 70 I = 1, N - L
|
|
IWORK( I ) = 0
|
|
70 CONTINUE
|
|
CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
|
|
*
|
|
* Determine the effective rank of A11
|
|
*
|
|
K = 0
|
|
DO 80 I = 1, MIN( M, N-L )
|
|
IF( CABS1( A( I, I ) ).GT.TOLA )
|
|
$ K = K + 1
|
|
80 CONTINUE
|
|
*
|
|
* Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
|
|
*
|
|
CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
|
|
$ A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
|
|
*
|
|
IF( WANTU ) THEN
|
|
*
|
|
* Copy the details of U, and form U
|
|
*
|
|
CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
|
|
IF( M.GT.1 )
|
|
$ CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
|
|
$ LDU )
|
|
CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
|
|
END IF
|
|
*
|
|
IF( WANTQ ) THEN
|
|
*
|
|
* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
|
|
*
|
|
CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
|
|
END IF
|
|
*
|
|
* Clean up A: set the strictly lower triangular part of
|
|
* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
|
|
*
|
|
DO 100 J = 1, K - 1
|
|
DO 90 I = J + 1, K
|
|
A( I, J ) = CZERO
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
IF( M.GT.K )
|
|
$ CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
|
|
*
|
|
IF( N-L.GT.K ) THEN
|
|
*
|
|
* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
|
|
*
|
|
CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
|
|
*
|
|
IF( WANTQ ) THEN
|
|
*
|
|
* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
|
|
*
|
|
CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
|
|
$ LDA, TAU, Q, LDQ, WORK, INFO )
|
|
END IF
|
|
*
|
|
* Clean up A
|
|
*
|
|
CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
|
|
DO 120 J = N - L - K + 1, N - L
|
|
DO 110 I = J - N + L + K + 1, K
|
|
A( I, J ) = CZERO
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
IF( M.GT.K ) THEN
|
|
*
|
|
* QR factorization of A( K+1:M,N-L+1:N )
|
|
*
|
|
CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
|
|
*
|
|
IF( WANTU ) THEN
|
|
*
|
|
* Update U(:,K+1:M) := U(:,K+1:M)*U1
|
|
*
|
|
CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
|
|
$ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
|
|
$ WORK, INFO )
|
|
END IF
|
|
*
|
|
* Clean up
|
|
*
|
|
DO 140 J = N - L + 1, N
|
|
DO 130 I = J - N + K + L + 1, M
|
|
A( I, J ) = CZERO
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZGGSVP
|
|
*
|
|
END
|
|
|