You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
570 lines
17 KiB
570 lines
17 KiB
*> \brief \b CGBBRD
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGBBRD + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbbrd.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbbrd.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbbrd.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
|
|
* LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER VECT
|
|
* INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL D( * ), E( * ), RWORK( * )
|
|
* COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
|
|
* $ Q( LDQ, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CGBBRD reduces a complex general m-by-n band matrix A to real upper
|
|
*> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
|
|
*>
|
|
*> The routine computes B, and optionally forms Q or P**H, or computes
|
|
*> Q**H*C for a given matrix C.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] VECT
|
|
*> \verbatim
|
|
*> VECT is CHARACTER*1
|
|
*> Specifies whether or not the matrices Q and P**H are to be
|
|
*> formed.
|
|
*> = 'N': do not form Q or P**H;
|
|
*> = 'Q': form Q only;
|
|
*> = 'P': form P**H only;
|
|
*> = 'B': form both.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NCC
|
|
*> \verbatim
|
|
*> NCC is INTEGER
|
|
*> The number of columns of the matrix C. NCC >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> The number of subdiagonals of the matrix A. KL >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> The number of superdiagonals of the matrix A. KU >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX array, dimension (LDAB,N)
|
|
*> On entry, the m-by-n band matrix A, stored in rows 1 to
|
|
*> KL+KU+1. The j-th column of A is stored in the j-th column of
|
|
*> the array AB as follows:
|
|
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
|
|
*> On exit, A is overwritten by values generated during the
|
|
*> reduction.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array A. LDAB >= KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (min(M,N))
|
|
*> The diagonal elements of the bidiagonal matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (min(M,N)-1)
|
|
*> The superdiagonal elements of the bidiagonal matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ,M)
|
|
*> If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
|
|
*> If VECT = 'N' or 'P', the array Q is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q.
|
|
*> LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PT
|
|
*> \verbatim
|
|
*> PT is COMPLEX array, dimension (LDPT,N)
|
|
*> If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
|
|
*> If VECT = 'N' or 'Q', the array PT is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDPT
|
|
*> \verbatim
|
|
*> LDPT is INTEGER
|
|
*> The leading dimension of the array PT.
|
|
*> LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is COMPLEX array, dimension (LDC,NCC)
|
|
*> On entry, an m-by-ncc matrix C.
|
|
*> On exit, C is overwritten by Q**H*C.
|
|
*> C is not referenced if NCC = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the array C.
|
|
*> LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (max(M,N))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (max(M,N))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGBcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
|
|
$ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER VECT
|
|
INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL D( * ), E( * ), RWORK( * )
|
|
COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
|
|
$ Q( LDQ, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO
|
|
PARAMETER ( ZERO = 0.0E+0 )
|
|
COMPLEX CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
|
|
$ CONE = ( 1.0E+0, 0.0E+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL WANTB, WANTC, WANTPT, WANTQ
|
|
INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
|
|
$ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
|
|
REAL ABST, RC
|
|
COMPLEX RA, RB, RS, T
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CLARGV, CLARTG, CLARTV, CLASET, CROT, CSCAL,
|
|
$ XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, CONJG, MAX, MIN
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
WANTB = LSAME( VECT, 'B' )
|
|
WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
|
|
WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
|
|
WANTC = NCC.GT.0
|
|
KLU1 = KL + KU + 1
|
|
INFO = 0
|
|
IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
|
|
$ THEN
|
|
INFO = -1
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( NCC.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( KL.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( KU.LT.0 ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDAB.LT.KLU1 ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
|
|
INFO = -12
|
|
ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
|
|
INFO = -14
|
|
ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
|
|
INFO = -16
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGBBRD', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Initialize Q and P**H to the unit matrix, if needed
|
|
*
|
|
IF( WANTQ )
|
|
$ CALL CLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
|
|
IF( WANTPT )
|
|
$ CALL CLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
MINMN = MIN( M, N )
|
|
*
|
|
IF( KL+KU.GT.1 ) THEN
|
|
*
|
|
* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
|
|
* first to lower bidiagonal form and then transform to upper
|
|
* bidiagonal
|
|
*
|
|
IF( KU.GT.0 ) THEN
|
|
ML0 = 1
|
|
MU0 = 2
|
|
ELSE
|
|
ML0 = 2
|
|
MU0 = 1
|
|
END IF
|
|
*
|
|
* Wherever possible, plane rotations are generated and applied in
|
|
* vector operations of length NR over the index set J1:J2:KLU1.
|
|
*
|
|
* The complex sines of the plane rotations are stored in WORK,
|
|
* and the real cosines in RWORK.
|
|
*
|
|
KLM = MIN( M-1, KL )
|
|
KUN = MIN( N-1, KU )
|
|
KB = KLM + KUN
|
|
KB1 = KB + 1
|
|
INCA = KB1*LDAB
|
|
NR = 0
|
|
J1 = KLM + 2
|
|
J2 = 1 - KUN
|
|
*
|
|
DO 90 I = 1, MINMN
|
|
*
|
|
* Reduce i-th column and i-th row of matrix to bidiagonal form
|
|
*
|
|
ML = KLM + 1
|
|
MU = KUN + 1
|
|
DO 80 KK = 1, KB
|
|
J1 = J1 + KB
|
|
J2 = J2 + KB
|
|
*
|
|
* generate plane rotations to annihilate nonzero elements
|
|
* which have been created below the band
|
|
*
|
|
IF( NR.GT.0 )
|
|
$ CALL CLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
|
|
$ WORK( J1 ), KB1, RWORK( J1 ), KB1 )
|
|
*
|
|
* apply plane rotations from the left
|
|
*
|
|
DO 10 L = 1, KB
|
|
IF( J2-KLM+L-1.GT.N ) THEN
|
|
NRT = NR - 1
|
|
ELSE
|
|
NRT = NR
|
|
END IF
|
|
IF( NRT.GT.0 )
|
|
$ CALL CLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
|
|
$ AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
|
|
$ RWORK( J1 ), WORK( J1 ), KB1 )
|
|
10 CONTINUE
|
|
*
|
|
IF( ML.GT.ML0 ) THEN
|
|
IF( ML.LE.M-I+1 ) THEN
|
|
*
|
|
* generate plane rotation to annihilate a(i+ml-1,i)
|
|
* within the band, and apply rotation from the left
|
|
*
|
|
CALL CLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
|
|
$ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
|
|
AB( KU+ML-1, I ) = RA
|
|
IF( I.LT.N )
|
|
$ CALL CROT( MIN( KU+ML-2, N-I ),
|
|
$ AB( KU+ML-2, I+1 ), LDAB-1,
|
|
$ AB( KU+ML-1, I+1 ), LDAB-1,
|
|
$ RWORK( I+ML-1 ), WORK( I+ML-1 ) )
|
|
END IF
|
|
NR = NR + 1
|
|
J1 = J1 - KB1
|
|
END IF
|
|
*
|
|
IF( WANTQ ) THEN
|
|
*
|
|
* accumulate product of plane rotations in Q
|
|
*
|
|
DO 20 J = J1, J2, KB1
|
|
CALL CROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
|
|
$ RWORK( J ), CONJG( WORK( J ) ) )
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
IF( WANTC ) THEN
|
|
*
|
|
* apply plane rotations to C
|
|
*
|
|
DO 30 J = J1, J2, KB1
|
|
CALL CROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
|
|
$ RWORK( J ), WORK( J ) )
|
|
30 CONTINUE
|
|
END IF
|
|
*
|
|
IF( J2+KUN.GT.N ) THEN
|
|
*
|
|
* adjust J2 to keep within the bounds of the matrix
|
|
*
|
|
NR = NR - 1
|
|
J2 = J2 - KB1
|
|
END IF
|
|
*
|
|
DO 40 J = J1, J2, KB1
|
|
*
|
|
* create nonzero element a(j-1,j+ku) above the band
|
|
* and store it in WORK(n+1:2*n)
|
|
*
|
|
WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
|
|
AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
|
|
40 CONTINUE
|
|
*
|
|
* generate plane rotations to annihilate nonzero elements
|
|
* which have been generated above the band
|
|
*
|
|
IF( NR.GT.0 )
|
|
$ CALL CLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
|
|
$ WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
|
|
$ KB1 )
|
|
*
|
|
* apply plane rotations from the right
|
|
*
|
|
DO 50 L = 1, KB
|
|
IF( J2+L-1.GT.M ) THEN
|
|
NRT = NR - 1
|
|
ELSE
|
|
NRT = NR
|
|
END IF
|
|
IF( NRT.GT.0 )
|
|
$ CALL CLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
|
|
$ AB( L, J1+KUN ), INCA,
|
|
$ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
|
|
50 CONTINUE
|
|
*
|
|
IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
|
|
IF( MU.LE.N-I+1 ) THEN
|
|
*
|
|
* generate plane rotation to annihilate a(i,i+mu-1)
|
|
* within the band, and apply rotation from the right
|
|
*
|
|
CALL CLARTG( AB( KU-MU+3, I+MU-2 ),
|
|
$ AB( KU-MU+2, I+MU-1 ),
|
|
$ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
|
|
AB( KU-MU+3, I+MU-2 ) = RA
|
|
CALL CROT( MIN( KL+MU-2, M-I ),
|
|
$ AB( KU-MU+4, I+MU-2 ), 1,
|
|
$ AB( KU-MU+3, I+MU-1 ), 1,
|
|
$ RWORK( I+MU-1 ), WORK( I+MU-1 ) )
|
|
END IF
|
|
NR = NR + 1
|
|
J1 = J1 - KB1
|
|
END IF
|
|
*
|
|
IF( WANTPT ) THEN
|
|
*
|
|
* accumulate product of plane rotations in P**H
|
|
*
|
|
DO 60 J = J1, J2, KB1
|
|
CALL CROT( N, PT( J+KUN-1, 1 ), LDPT,
|
|
$ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
|
|
$ CONJG( WORK( J+KUN ) ) )
|
|
60 CONTINUE
|
|
END IF
|
|
*
|
|
IF( J2+KB.GT.M ) THEN
|
|
*
|
|
* adjust J2 to keep within the bounds of the matrix
|
|
*
|
|
NR = NR - 1
|
|
J2 = J2 - KB1
|
|
END IF
|
|
*
|
|
DO 70 J = J1, J2, KB1
|
|
*
|
|
* create nonzero element a(j+kl+ku,j+ku-1) below the
|
|
* band and store it in WORK(1:n)
|
|
*
|
|
WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
|
|
AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
|
|
70 CONTINUE
|
|
*
|
|
IF( ML.GT.ML0 ) THEN
|
|
ML = ML - 1
|
|
ELSE
|
|
MU = MU - 1
|
|
END IF
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
END IF
|
|
*
|
|
IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
|
|
*
|
|
* A has been reduced to complex lower bidiagonal form
|
|
*
|
|
* Transform lower bidiagonal form to upper bidiagonal by applying
|
|
* plane rotations from the left, overwriting superdiagonal
|
|
* elements on subdiagonal elements
|
|
*
|
|
DO 100 I = 1, MIN( M-1, N )
|
|
CALL CLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
|
|
AB( 1, I ) = RA
|
|
IF( I.LT.N ) THEN
|
|
AB( 2, I ) = RS*AB( 1, I+1 )
|
|
AB( 1, I+1 ) = RC*AB( 1, I+1 )
|
|
END IF
|
|
IF( WANTQ )
|
|
$ CALL CROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
|
|
$ CONJG( RS ) )
|
|
IF( WANTC )
|
|
$ CALL CROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
|
|
$ RS )
|
|
100 CONTINUE
|
|
ELSE
|
|
*
|
|
* A has been reduced to complex upper bidiagonal form or is
|
|
* diagonal
|
|
*
|
|
IF( KU.GT.0 .AND. M.LT.N ) THEN
|
|
*
|
|
* Annihilate a(m,m+1) by applying plane rotations from the
|
|
* right
|
|
*
|
|
RB = AB( KU, M+1 )
|
|
DO 110 I = M, 1, -1
|
|
CALL CLARTG( AB( KU+1, I ), RB, RC, RS, RA )
|
|
AB( KU+1, I ) = RA
|
|
IF( I.GT.1 ) THEN
|
|
RB = -CONJG( RS )*AB( KU, I )
|
|
AB( KU, I ) = RC*AB( KU, I )
|
|
END IF
|
|
IF( WANTPT )
|
|
$ CALL CROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
|
|
$ RC, CONJG( RS ) )
|
|
110 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* Make diagonal and superdiagonal elements real, storing them in D
|
|
* and E
|
|
*
|
|
T = AB( KU+1, 1 )
|
|
DO 120 I = 1, MINMN
|
|
ABST = ABS( T )
|
|
D( I ) = ABST
|
|
IF( ABST.NE.ZERO ) THEN
|
|
T = T / ABST
|
|
ELSE
|
|
T = CONE
|
|
END IF
|
|
IF( WANTQ )
|
|
$ CALL CSCAL( M, T, Q( 1, I ), 1 )
|
|
IF( WANTC )
|
|
$ CALL CSCAL( NCC, CONJG( T ), C( I, 1 ), LDC )
|
|
IF( I.LT.MINMN ) THEN
|
|
IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
|
|
E( I ) = ZERO
|
|
T = AB( 1, I+1 )
|
|
ELSE
|
|
IF( KU.EQ.0 ) THEN
|
|
T = AB( 2, I )*CONJG( T )
|
|
ELSE
|
|
T = AB( KU, I+1 )*CONJG( T )
|
|
END IF
|
|
ABST = ABS( T )
|
|
E( I ) = ABST
|
|
IF( ABST.NE.ZERO ) THEN
|
|
T = T / ABST
|
|
ELSE
|
|
T = CONE
|
|
END IF
|
|
IF( WANTPT )
|
|
$ CALL CSCAL( N, T, PT( I+1, 1 ), LDPT )
|
|
T = AB( KU+1, I+1 )*CONJG( T )
|
|
END IF
|
|
END IF
|
|
120 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of CGBBRD
|
|
*
|
|
END
|
|
|