Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

995 lines
43 KiB

SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
M, N, X, LDX, Y, LDY, NRNK, TOL, &
K, EIGS, Z, LDZ, RES, B, LDB, &
W, LDW, S, LDS, ZWORK, LZWORK, &
RWORK, LRWORK, IWORK, LIWORK, INFO )
! March 2023
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real32
!.....
! Scalar arguments
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
NRNK, LDZ, LDB, LDW, LDS, &
LIWORK, LRWORK, LZWORK
INTEGER, INTENT(OUT) :: K, INFO
REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
W(LDW,*), S(LDS,*)
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
REAL(KIND=WP), INTENT(OUT) :: RES(*)
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!............................................................
! Purpose
! =======
! CGEDMD computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, CGEDMD computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, CGEDMD returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
!......................................................................
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!......................................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product X(:,1:K)*W, where X
! contains a POD basis (leading left singular vectors
! of the data matrix X) and W contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of K, X, W, Z.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will be
! computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: CGESVD (the QR SVD algorithm)
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M>= 0
! The state space dimension (the row dimension of X, Y).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshot pairs
! (the number of columns of X and Y).
!.....
! X (input/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, X contains the data snapshot matrix X. It is
! assumed that the column norms of X are in the range of
! the normalized floating point numbers.
! < On exit, the leading K columns of X contain a POD basis,
! i.e. the leading K left singular vectors of the input
! data matrix X, U(:,1:K). All N columns of X contain all
! left singular vectors of the input matrix X.
! See the descriptions of K, Z and W.
!.....
! LDX (input) INTEGER, LDX >= M
! The leading dimension of the array X.
!.....
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, Y contains the data snapshot matrix Y
! < On exit,
! If JOBR == 'R', the leading K columns of Y contain
! the residual vectors for the computed Ritz pairs.
! See the description of RES.
! If JOBR == 'N', Y contains the original input data,
! scaled according to the value of JOBS.
!.....
! LDY (input) INTEGER , LDY >= M
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the descriptions of TOL and K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the POD basis for the data snapshot
! matrix X and the number of the computed Ritz pairs.
! The value of K is determined according to the rule set
! by the parameters NRNK and TOL.
! See the descriptions of NRNK and TOL.
!.....
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
! The leading K (K<=N) entries of EIGS contain
! the computed eigenvalues (Ritz values).
! See the descriptions of K, and Z.
!.....
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
! is an eigenvector corresponding to EIGS(i). The columns
! of W(1:k,1:K) are the computed eigenvectors of the
! K-by-K Rayleigh quotient.
! See the descriptions of EIGS, X and W.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) N-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs,
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
! See the description of EIGS and Z.
!.....
! B (output) COMPLEX(KIND=WP) M-by-N array.
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:M,1:K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! If JOBF =='N', then B is not referenced.
! See the descriptions of X, W, K.
!.....
! LDB (input) INTEGER, LDB >= M
! The leading dimension of the array B.
!.....
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
! On exit, W(1:K,1:K) contains the K computed
! eigenvectors of the matrix Rayleigh quotient.
! The Ritz vectors (returned in Z) are the
! product of X (containing a POD basis for the input
! matrix X) and W. See the descriptions of K, S, X and Z.
! W is also used as a workspace to temporarily store the
! right singular vectors of X.
!.....
! LDW (input) INTEGER, LDW >= N
! The leading dimension of the array W.
!.....
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by CGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N
! The leading dimension of the array S.
!.....
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
! ZWORK is used as complex workspace in the complex SVD, as
! specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing
! the eigenvalues of a Rayleigh quotient.
! If the call to CGEDMD is only workspace query, then
! ZWORK(1) contains the minimal complex workspace length and
! ZWORK(2) is the optimal complex workspace length.
! Hence, the length of work is at least 2.
! See the description of LZWORK.
!.....
! LZWORK (input) INTEGER
! The minimal length of the workspace vector ZWORK.
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV),
! where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal
! LZWORK_SVD is calculated as follows
! If WHTSVD == 1 :: CGESVD ::
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
! If WHTSVD == 2 :: CGESDD ::
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
! If WHTSVD == 3 :: CGESVDQ ::
! LZWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: CGEJSV ::
! LZWORK_SVD = obtainable by a query
! If on entry LZWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths and returns them in
! LZWORK(1) and LZWORK(2), respectively.
!.....
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
! On exit, RWORK(1:N) contains the singular values of
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
! and Y to avoid overflow in the SVD of X.
! This may be of interest if the scaling option is off
! and as many as possible smallest eigenvalues are
! desired to the highest feasible accuracy.
! If the call to CGEDMD is only workspace query, then
! RWORK(1) contains the minimal workspace length.
! See the description of LRWORK.
!.....
! LRWORK (input) INTEGER
! The minimal length of the workspace vector RWORK.
! LRWORK is calculated as follows:
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where
! LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
! for the SVD subroutine determined by the input parameter
! WHTSVD.
! If WHTSVD == 1 :: CGESVD ::
! LRWORK_SVD = 5*MIN(M,N)
! If WHTSVD == 2 :: CGESDD ::
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
! If WHTSVD == 3 :: CGESVDQ ::
! LRWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: CGEJSV ::
! LRWORK_SVD = obtainable by a query
! If on entry LRWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! real workspace length and returns it in RWORK(1).
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for ZWORK, RWORK and
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
! Local scalars
! ~~~~~~~~~~~~~
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
SSUM, XSCL1, XSCL2
INTEGER :: i, j, IMINWR, INFO1, INFO2, &
LWRKEV, LWRSDD, LWRSVD, LWRSVJ, &
LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
OLWORK, MLRWRK
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, &
WNTEX, WNTREF, WNTRES, WNTVEC
CHARACTER :: JOBZL, T_OR_N
CHARACTER :: JSVOPT
!
! Local arrays
! ~~~~~~~~~~~~
REAL(KIND=WP) :: RDUMMY(2)
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2
EXTERNAL CLANGE, SLAMCH, SCNRM2, ICAMAX
INTEGER ICAMAX
LOGICAL SISNAN, LSAME
EXTERNAL SISNAN, LSAME
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL CAXPY, CGEMM, CSSCAL
EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, &
CLACPY, CLASCL, CLASSQ, XERBLA
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC FLOAT, INT, MAX, SQRT
!............................................................
!
! Test the input arguments
!
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
INFO = 0
LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) &
.OR. ( LRWORK == -1 ) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') &
.OR. LSAME(JOBZ,'F')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -4
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. &
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
INFO = -5
ELSE IF ( M < 0 ) THEN
INFO = -6
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
INFO = -7
ELSE IF ( LDX < M ) THEN
INFO = -9
ELSE IF ( LDY < M ) THEN
INFO = -11
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -12
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -13
ELSE IF ( LDZ < M ) THEN
INFO = -17
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
INFO = -20
ELSE IF ( LDW < N ) THEN
INFO = -22
ELSE IF ( LDS < N ) THEN
INFO = -24
END IF
!
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( N == 0 ) THEN
! Quick return. All output except K is void.
! INFO=1 signals the void input.
! In case of a workspace query, the default
! minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
RWORK(1) = 1
ZWORK(1) = 2
ZWORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
IMINWR = 1
MLRWRK = MAX(1,N)
MLWORK = 2
OLWORK = 2
SELECT CASE ( WHTSVD )
CASE (1)
! The following is specified as the minimal
! length of WORK in the definition of CGESVD:
! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
MLWORK = MAX(MLWORK,MWRSVD)
MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N))
IF ( LQUERY ) THEN
CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, &
B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 )
LWRSVD = INT( ZWORK(1) )
OLWORK = MAX(OLWORK,LWRSVD)
END IF
CASE (2)
! The following is specified as the minimal
! length of WORK in the definition of CGESDD:
! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N)
! In LAPACK 3.10.1 RWORK is defined differently.
! Below we take max over the two versions.
! IMINWR = 8*MIN(M,N)
MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
MLWORK = MAX(MLWORK,MWRSDD)
IMINWR = 8*MIN(M,N)
MLRWRK = MAX( MLRWRK, N + &
MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), &
5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), &
2*MAX(M,N)*MIN(M,N)+ &
2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
IF ( LQUERY ) THEN
CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, &
LDB, W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 )
LWRSDD = MAX(MWRSDD,INT( ZWORK(1) ))
OLWORK = MAX(OLWORK,LWRSDD)
END IF
CASE (3)
CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, &
IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 )
IMINWR = IWORK(1)
MWRSVQ = INT(ZWORK(2))
MLWORK = MAX(MLWORK,MWRSVQ)
MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1)))
IF ( LQUERY ) THEN
LWRSVQ = INT(ZWORK(1))
OLWORK = MAX(OLWORK,LWRSVQ)
END IF
CASE (4)
JSVOPT = 'J'
CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
ZWORK, -1, RDUMMY, -1, IWORK, INFO1 )
IMINWR = IWORK(1)
MWRSVJ = INT(ZWORK(2))
MLWORK = MAX(MLWORK,MWRSVJ)
MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1))))
IF ( LQUERY ) THEN
LWRSVJ = INT(ZWORK(1))
OLWORK = MAX(OLWORK,LWRSVJ)
END IF
END SELECT
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
JOBZL = 'V'
ELSE
JOBZL = 'N'
END IF
! Workspace calculation to the CGEEV call
MWRKEV = MAX( 1, 2*N )
MLWORK = MAX(MLWORK,MWRKEV)
MLRWRK = MAX(MLRWRK,N+2*N)
IF ( LQUERY ) THEN
CALL CGEEV( 'N', JOBZL, N, S, LDS, EIGS, &
W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) ! LAPACK CALL
LWRKEV = INT(ZWORK(1))
OLWORK = MAX( OLWORK, LWRKEV )
OLWORK = MAX( 2, OLWORK )
END IF
!
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30
IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26
END IF
!
IF( INFO /= 0 ) THEN
CALL XERBLA( 'CGEDMD', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
RWORK(1) = MLRWRK
ZWORK(1) = MLWORK
ZWORK(2) = OLWORK
RETURN
END IF
!............................................................
!
OFL = SLAMCH('O')*SLAMCH('P')
SMALL = SLAMCH('S')
BADXY = .FALSE.
!
! <1> Optional scaling of the snapshots (columns of X, Y)
! ==========================================================
IF ( SCCOLX ) THEN
! The columns of X will be normalized.
! To prevent overflows, the column norms of X are
! carefully computed using CLASSQ.
K = 0
DO i = 1, N
!WORK(i) = SCNRM2( M, X(1,i), 1 )
SCALE = ZERO
CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM )
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
K = 0
INFO = -8
CALL XERBLA('CGEDMD',-INFO)
END IF
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of X(:,i) overflows. First, X(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
! Next, the norm of X(:,i) is stored without
! overflow as WORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of X(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, X(1,i), LDX, INFO2 )
RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) )
ELSE
! X(:,i) will be scaled to unit 2-norm
RWORK(i) = SCALE * ROOTSC
CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
X(1,i), LDX, INFO2 ) ! LAPACK CALL
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
END IF
ELSE
RWORK(i) = ZERO
K = K + 1
END IF
END DO
IF ( K == N ) THEN
! All columns of X are zero. Return error code -8.
! (the 8th input variable had an illegal value)
K = 0
INFO = -8
CALL XERBLA('CGEDMD',-INFO)
RETURN
END IF
DO i = 1, N
! Now, apply the same scaling to the columns of Y.
IF ( RWORK(i) > ZERO ) THEN
CALL CSSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
ELSE IF ( RWORK(i) < ZERO ) THEN
CALL CLASCL( 'G', 0, 0, -RWORK(i), &
ONE/FLOAT(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL
ELSE IF ( ABS(Y(ICAMAX(M, Y(1,i),1),i )) &
/= ZERO ) THEN
! X(:,i) is zero vector. For consistency,
! Y(:,i) should also be zero. If Y(:,i) is not
! zero, then the data might be inconsistent or
! corrupted. If JOBS == 'C', Y(:,i) is set to
! zero and a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
IF ( LSAME(JOBS,'C')) &
CALL CSSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL
END IF
END DO
END IF
!
IF ( SCCOLY ) THEN
! The columns of Y will be normalized.
! To prevent overflows, the column norms of Y are
! carefully computed using CLASSQ.
DO i = 1, N
!RWORK(i) = SCNRM2( M, Y(1,i), 1 )
SCALE = ZERO
CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM )
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
K = 0
INFO = -10
CALL XERBLA('CGEDMD',-INFO)
END IF
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of Y(:,i) overflows. First, Y(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
! Next, the norm of Y(:,i) is stored without
! overflow as RWORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of Y(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, Y(1,i), LDY, INFO2 )
RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) )
ELSE
! Y(:,i) will be scaled to unit 2-norm
RWORK(i) = SCALE * ROOTSC
CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
Y(1,i), LDY, INFO2 ) ! LAPACK CALL
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
END IF
ELSE
RWORK(i) = ZERO
END IF
END DO
DO i = 1, N
! Now, apply the same scaling to the columns of X.
IF ( RWORK(i) > ZERO ) THEN
CALL CSSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
ELSE IF ( RWORK(i) < ZERO ) THEN
CALL CLASCL( 'G', 0, 0, -RWORK(i), &
ONE/FLOAT(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL
ELSE IF ( ABS(X(ICAMAX(M, X(1,i),1),i )) &
/= ZERO ) THEN
! Y(:,i) is zero vector. If X(:,i) is not
! zero, then a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
END IF
END DO
END IF
!
! <2> SVD of the data snapshot matrix X.
! =====================================
! The left singular vectors are stored in the array X.
! The right singular vectors are in the array W.
! The array W will later on contain the eigenvectors
! of a Rayleigh quotient.
NUMRNK = N
SELECT CASE ( WHTSVD )
CASE (1)
CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, &
LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
T_OR_N = 'C'
CASE (2)
CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, &
LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL
T_OR_N = 'C'
CASE (3)
CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, RWORK, Z, LDZ, W, LDW, &
NUMRNK, IWORK, LIWORK, ZWORK, &
LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL
CALL CLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'C'
CASE (4)
CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL
CALL CLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'N'
XSCL1 = RWORK(N+1)
XSCL2 = RWORK(N+2)
IF ( XSCL1 /= XSCL2 ) THEN
! This is an exceptional situation. If the
! data matrices are not scaled and the
! largest singular value of X overflows.
! In that case CGEJSV can return the SVD
! in scaled form. The scaling factor can be used
! to rescale the data (X and Y).
CALL CLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 )
END IF
END SELECT
!
IF ( INFO1 > 0 ) THEN
! The SVD selected subroutine did not converge.
! Return with an error code.
INFO = 2
RETURN
END IF
!
IF ( RWORK(1) == ZERO ) THEN
! The largest computed singular value of (scaled)
! X is zero. Return error code -8
! (the 8th input variable had an illegal value).
K = 0
INFO = -8
CALL XERBLA('CGEDMD',-INFO)
RETURN
END IF
!
!<3> Determine the numerical rank of the data
! snapshots matrix X. This depends on the
! parameters NRNK and TOL.
SELECT CASE ( NRNK )
CASE ( -1 )
K = 1
DO i = 2, NUMRNK
IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. &
( RWORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE ( -2 )
K = 1
DO i = 1, NUMRNK-1
IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. &
( RWORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE DEFAULT
K = 1
DO i = 2, NRNK
IF ( RWORK(i) <= SMALL ) EXIT
K = K + 1
END DO
END SELECT
! Now, U = X(1:M,1:K) is the SVD/POD basis for the
! snapshot data in the input matrix X.
!<4> Compute the Rayleigh quotient S = U^H * A * U.
! Depending on the requested outputs, the computation
! is organized to compute additional auxiliary
! matrices (for the residuals and refinements).
!
! In all formulas below, we need V_k*Sigma_k^(-1)
! where either V_k is in W(1:N,1:K), or V_k^H is in
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
IF ( LSAME(T_OR_N, 'N') ) THEN
DO i = 1, K
CALL CSSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL
! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC
END DO
ELSE
! This non-unit stride access is due to the fact
! that CGESVD, CGESVDQ and CGESDD return the
! adjoint matrix of the right singular vectors.
!DO i = 1, K
! CALL DSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL
! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC
!END DO
DO i = 1, K
RWORK(N+i) = ONE/RWORK(i)
END DO
DO j = 1, N
DO i = 1, K
W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j)
END DO
END DO
END IF
!
IF ( WNTREF ) THEN
!
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
! for computing the refined Ritz vectors
! (optionally, outside CGEDMD).
CALL CGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, &
LDW, ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N'
!
! At this point Z contains
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
! this is needed for computing the residuals.
! This matrix is returned in the array B and
! it can be used to compute refined Ritz vectors.
CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC
CALL CGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, &
LDZ, ZZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC
! At this point S = U^H * A * U is the Rayleigh quotient.
ELSE
! A * U(:,1:K) is not explicitly needed and the
! computation is organized differently. The Rayleigh
! quotient is computed more efficiently.
CALL CGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, &
ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) ) ! INTRINSIC
!
CALL CGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, &
LDW, ZZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N'
! At this point S = U^H * A * U is the Rayleigh quotient.
! If the residuals are requested, save scaled V_k into Z.
! Recall that V_k or V_k^H is stored in W.
IF ( WNTRES .OR. WNTEX ) THEN
IF ( LSAME(T_OR_N, 'N') ) THEN
CALL CLACPY( 'A', N, K, W, LDW, Z, LDZ )
ELSE
CALL CLACPY( 'A', K, N, W, LDW, Z, LDZ )
END IF
END IF
END IF
!
!<5> Compute the Ritz values and (if requested) the
! right eigenvectors of the Rayleigh quotient.
!
CALL CGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, &
LDW, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
!
! W(1:K,1:K) contains the eigenvectors of the Rayleigh
! quotient. See the description of Z.
! Also, see the description of CGEEV.
IF ( INFO1 > 0 ) THEN
! CGEEV failed to compute the eigenvalues and
! eigenvectors of the Rayleigh quotient.
INFO = 3
RETURN
END IF
!
! <6> Compute the eigenvectors (if requested) and,
! the residuals (if requested).
!
IF ( WNTVEC .OR. WNTEX ) THEN
IF ( WNTRES ) THEN
IF ( WNTREF ) THEN
! Here, if the refinement is requested, we have
! A*U(:,1:K) already computed and stored in Z.
! For the residuals, need Y = A * U(:,1;K) * W.
CALL CGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, &
LDW, ZZERO, Y, LDY ) ! BLAS CALL
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC
! This frees Z; Y contains A * U(:,1:K) * W.
ELSE
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z
CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
W, LDW, ZZERO, S, LDS)
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
LDS, ZZERO, Z, LDZ)
! Save a copy of Z into Y and free Z for holding
! the Ritz vectors.
CALL CLACPY( 'A', M, K, Z, LDZ, Y, LDY )
IF ( WNTEX ) CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
ELSE IF ( WNTEX ) THEN
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) is stored in Z
CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
W, LDW, ZZERO, S, LDS)
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
LDS, ZZERO, B, LDB)
! The above call replaces the following two calls
! that were used in the developing-testing phase.
! CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
! LDS, ZZERO, Z, LDZ)
! Save a copy of Z into Y and free Z for holding
! the Ritz vectors.
! CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
!
! Compute the Ritz vectors
IF ( WNTVEC ) CALL CGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, &
ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC
!
IF ( WNTRES ) THEN
DO i = 1, K
CALL CAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC
RES(i) = SCNRM2( M, Y(1,i), 1) ! BLAS CALL
END DO
END IF
END IF
!
IF ( WHTSVD == 4 ) THEN
RWORK(N+1) = XSCL1
RWORK(N+2) = XSCL2
END IF
!
! Successful exit.
IF ( .NOT. BADXY ) THEN
INFO = 0
ELSE
! A warning on possible data inconsistency.
! This should be a rare event.
INFO = 4
END IF
!............................................................
RETURN
! ......
END SUBROUTINE CGEDMD