You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
369 lines
10 KiB
369 lines
10 KiB
*> \brief \b CGEQP3
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGEQP3 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqp3.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqp3.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqp3.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER JPVT( * )
|
|
* REAL RWORK( * )
|
|
* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CGEQP3 computes a QR factorization with column pivoting of a
|
|
*> matrix A: A*P = Q*R using Level 3 BLAS.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit, the upper triangle of the array contains the
|
|
*> min(M,N)-by-N upper trapezoidal matrix R; the elements below
|
|
*> the diagonal, together with the array TAU, represent the
|
|
*> unitary matrix Q as a product of min(M,N) elementary
|
|
*> reflectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] JPVT
|
|
*> \verbatim
|
|
*> JPVT is INTEGER array, dimension (N)
|
|
*> On entry, if JPVT(J).ne.0, the J-th column of A is permuted
|
|
*> to the front of A*P (a leading column); if JPVT(J)=0,
|
|
*> the J-th column of A is a free column.
|
|
*> On exit, if JPVT(J)=K, then the J-th column of A*P was the
|
|
*> the K-th column of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX array, dimension (min(M,N))
|
|
*> The scalar factors of the elementary reflectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO=0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= N+1.
|
|
*> For optimal performance LWORK >= ( N+1 )*NB, where NB
|
|
*> is the optimal blocksize.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The matrix Q is represented as a product of elementary reflectors
|
|
*>
|
|
*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
|
|
*>
|
|
*> Each H(i) has the form
|
|
*>
|
|
*> H(i) = I - tau * v * v**H
|
|
*>
|
|
*> where tau is a complex scalar, and v is a real/complex vector
|
|
*> with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
|
|
*> A(i+1:m,i), and tau in TAU(i).
|
|
*> \endverbatim
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
|
|
*> X. Sun, Computer Science Dept., Duke University, USA
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER JPVT( * )
|
|
REAL RWORK( * )
|
|
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER INB, INBMIN, IXOVER
|
|
PARAMETER ( INB = 1, INBMIN = 2, IXOVER = 3 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY
|
|
INTEGER FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
|
|
$ NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CGEQRF, CLAQP2, CLAQPS, CSWAP, CUNMQR, XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ILAENV
|
|
REAL SCNRM2
|
|
EXTERNAL ILAENV, SCNRM2
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC INT, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test input arguments
|
|
* ====================
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
MINMN = MIN( M, N )
|
|
IF( MINMN.EQ.0 ) THEN
|
|
IWS = 1
|
|
LWKOPT = 1
|
|
ELSE
|
|
IWS = N + 1
|
|
NB = ILAENV( INB, 'CGEQRF', ' ', M, N, -1, -1 )
|
|
LWKOPT = ( N + 1 )*NB
|
|
END IF
|
|
WORK( 1 ) = CMPLX( LWKOPT )
|
|
*
|
|
IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -8
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGEQP3', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Move initial columns up front.
|
|
*
|
|
NFXD = 1
|
|
DO 10 J = 1, N
|
|
IF( JPVT( J ).NE.0 ) THEN
|
|
IF( J.NE.NFXD ) THEN
|
|
CALL CSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
|
|
JPVT( J ) = JPVT( NFXD )
|
|
JPVT( NFXD ) = J
|
|
ELSE
|
|
JPVT( J ) = J
|
|
END IF
|
|
NFXD = NFXD + 1
|
|
ELSE
|
|
JPVT( J ) = J
|
|
END IF
|
|
10 CONTINUE
|
|
NFXD = NFXD - 1
|
|
*
|
|
* Factorize fixed columns
|
|
* =======================
|
|
*
|
|
* Compute the QR factorization of fixed columns and update
|
|
* remaining columns.
|
|
*
|
|
IF( NFXD.GT.0 ) THEN
|
|
NA = MIN( M, NFXD )
|
|
*CC CALL CGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
|
|
CALL CGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
|
|
IWS = MAX( IWS, INT( WORK( 1 ) ) )
|
|
IF( NA.LT.N ) THEN
|
|
*CC CALL CUNM2R( 'Left', 'Conjugate Transpose', M, N-NA,
|
|
*CC $ NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK,
|
|
*CC $ INFO )
|
|
CALL CUNMQR( 'Left', 'Conjugate Transpose', M, N-NA, NA, A,
|
|
$ LDA, TAU, A( 1, NA+1 ), LDA, WORK, LWORK,
|
|
$ INFO )
|
|
IWS = MAX( IWS, INT( WORK( 1 ) ) )
|
|
END IF
|
|
END IF
|
|
*
|
|
* Factorize free columns
|
|
* ======================
|
|
*
|
|
IF( NFXD.LT.MINMN ) THEN
|
|
*
|
|
SM = M - NFXD
|
|
SN = N - NFXD
|
|
SMINMN = MINMN - NFXD
|
|
*
|
|
* Determine the block size.
|
|
*
|
|
NB = ILAENV( INB, 'CGEQRF', ' ', SM, SN, -1, -1 )
|
|
NBMIN = 2
|
|
NX = 0
|
|
*
|
|
IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
|
|
*
|
|
* Determine when to cross over from blocked to unblocked code.
|
|
*
|
|
NX = MAX( 0, ILAENV( IXOVER, 'CGEQRF', ' ', SM, SN, -1,
|
|
$ -1 ) )
|
|
*
|
|
*
|
|
IF( NX.LT.SMINMN ) THEN
|
|
*
|
|
* Determine if workspace is large enough for blocked code.
|
|
*
|
|
MINWS = ( SN+1 )*NB
|
|
IWS = MAX( IWS, MINWS )
|
|
IF( LWORK.LT.MINWS ) THEN
|
|
*
|
|
* Not enough workspace to use optimal NB: Reduce NB and
|
|
* determine the minimum value of NB.
|
|
*
|
|
NB = LWORK / ( SN+1 )
|
|
NBMIN = MAX( 2, ILAENV( INBMIN, 'CGEQRF', ' ', SM, SN,
|
|
$ -1, -1 ) )
|
|
*
|
|
*
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
* Initialize partial column norms. The first N elements of work
|
|
* store the exact column norms.
|
|
*
|
|
DO 20 J = NFXD + 1, N
|
|
RWORK( J ) = SCNRM2( SM, A( NFXD+1, J ), 1 )
|
|
RWORK( N+J ) = RWORK( J )
|
|
20 CONTINUE
|
|
*
|
|
IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
|
|
$ ( NX.LT.SMINMN ) ) THEN
|
|
*
|
|
* Use blocked code initially.
|
|
*
|
|
J = NFXD + 1
|
|
*
|
|
* Compute factorization: while loop.
|
|
*
|
|
*
|
|
TOPBMN = MINMN - NX
|
|
30 CONTINUE
|
|
IF( J.LE.TOPBMN ) THEN
|
|
JB = MIN( NB, TOPBMN-J+1 )
|
|
*
|
|
* Factorize JB columns among columns J:N.
|
|
*
|
|
CALL CLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
|
|
$ JPVT( J ), TAU( J ), RWORK( J ),
|
|
$ RWORK( N+J ), WORK( 1 ), WORK( JB+1 ),
|
|
$ N-J+1 )
|
|
*
|
|
J = J + FJB
|
|
GO TO 30
|
|
END IF
|
|
ELSE
|
|
J = NFXD + 1
|
|
END IF
|
|
*
|
|
* Use unblocked code to factor the last or only block.
|
|
*
|
|
*
|
|
IF( J.LE.MINMN )
|
|
$ CALL CLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
|
|
$ TAU( J ), RWORK( J ), RWORK( N+J ), WORK( 1 ) )
|
|
*
|
|
END IF
|
|
*
|
|
WORK( 1 ) = CMPLX( LWKOPT )
|
|
RETURN
|
|
*
|
|
* End of CGEQP3
|
|
*
|
|
END
|
|
|